
RETRACTED – SECURITY BREAK DISCOVERED
This manuscript is obsolete. For details, see the break analysis by

Liam Eagen and Fairgate.

1

https://hackmd.io/@liameagen/bitvm3-garbling-note
https://fairgate.io/files/bitvm3-sec.pdf


BitVM3: Efficient Computation on Bitcoin

Robin Linus

July 16, 2025

Abstract

BitVM3 is a protocol for verifying SNARK proofs on Bitcoin that dramati-
cally reduces the on-chain footprint of its predecessor, BitVM2. By leveraging
optimistic computation with a garbled circuit, BitVM3 shifts the burden of
verification off-chain. This design enables an evaluator to generate a compact
fraud proof in the event of a dispute. The resulting on-chain transactions are
highly efficient: the assertion transaction is approximately 56 kB, while the
disproval transaction is just 200 bytes, reducing the on-chain cost of a dispute
by over 1,000 times compared to the previous design.

1 Introduction

BitVM3 significantly enhances the on-chain efficiency of SNARK proof verification
on Bitcoin. It addresses the primary drawback of BitVM2, where the ‘assertTx’
and ‘disproveTx’ were large (2-4 MB). In contrast, BitVM3 reduces the ‘assertTx’
to about 56 kB and the ‘disproveTx’ to a mere 200 bytes.
The core principle remains optimistic computation and the overall transaction
graph remains unchanged. However, instead of using Bitcoin Script for on-chain
computation, BitVM3 employs a garbled circuit to shift the computation off-chain.
This circuit is designed to conditionally reveal a secret, which acts as a fraud proof,
only if the garbler provides an invalid SNARK proof. This approach builds upon
ideas from Jeremy Rubin and Liam Eagen.

2 Computing Gate Labels

The garbling scheme is founded on an RSA-based system.

• Public Parameters: The garbler selects and publishes an RSA modulus
N = P · Q = (2p + 1)(2q + 1) (a product of two safe primes) and five pub-
lic exponents: e, e1, e2, e3, e4. These exponents must be invertible modulo
ϕ(N)

4 = p · q, and for performance, small primes (e.g., 3, 5, 7, 11, 13) are suit-
able. Let their inverses be d, d1, d2, d3, d4. Additionally, the derived exponent
h ≡ (e1e4d2 − e3) (mod pq) must also be invertible.

• Label Generation: Using the secret trapdoor ϕ(N), the garbler computes
the secret input wire labels a0, a1, b0, b1 ∈ Cpq ⊂ (Z/NZ)∗ by solving the
following system for output labels c0, c1 ∈ Cpq ⊂ (Z/NZ)∗:

ae0 · b
e1
0 ≡ c0 (mod N)

ae0 · b
e2
1 ≡ c0 (mod N)

ae1 · b
e3
0 ≡ c0 (mod N)

ae1 · b
e4
1 ≡ c1 (mod N)

2



The knowledge of pq allows the garbler to efficiently find a unique solution.
The explicit solutions for the secret input labels are:

b0 ≡ (c1c
−1
0 )h

−1

(mod N)

b1 ≡ be1d2
0 (mod N)

a0 ≡ cd0 · b
−e1d
0 (mod N)

a1 ≡ cd0 · b
−e3d
0 (mod N)

2.1 Setup for Tree Circuits (Backward Pass)

For a circuit with a tree structure (fan-out of 1), the garbler generates labels by
working backward from the final output gate.

1. For the final gate G′, choose output labels c′0, c
′
1 and solve for its input labels

(a′0, a
′
1, b

′
0, b

′
1).

2. For a preceding gate G whose output feeds into the first input wire of G′, its
output labels are determined by G′’s requirements: c0 = a′0 and c1 = a′1.

3. Solve for gate G’s input labels (a0, a1, b0, b1) using these newly defined c0, c1.

4. This process is repeated backward through the circuit. Since each gate feeds
into exactly one subsequent gate, the output labels for every gate are uniquely
determined.

2.2 Limitation of the Base Scheme: Fan-out > 1

The backward-pass setup fails for general circuits where a wire’s fan-out is greater
than one. Consider a gate G’s output wire feeding into both gate G′ (requiring
input label a′k) and gate G′′ (requiring input label b′′k). The labels a′k and b′′k are
determined independently by the structures of G′ and G′′ respectively, meaning in
general a′k ̸= b′′k . Gate G, however, can only produce a single output label ck. This
creates an impossible constraint where ck must equal both a′k and b′′k .

3 Static Fan-out Handling with Adaptor Elements

To handle fan-out in general circuits, we introduce static multiplicative ”Adaptor
Elements.” If an output wire Wy (with labels ℓy,0, ℓy,1) feeds an input wire Wxi

that requires different labels, the garbler pre-computes and publishes a static factor
Ti,k:

ℓxi,k ≡ ℓy,k · Ti,k (mod N)

The garbler, knowing all base labels during setup, computes this factor as Ti,k ≡
ℓxi,k · (ℓy,k)−1 (mod N). These adaptors become part of the public circuit param-
eters.

4 Reblinding

To reblind the circuit, one can raise the input labels to a secret exponent. The adap-
tor elements must also be reblinded. For k rounds of reblinding (i.e. reusing the
circuit k times), the garbler publishes pairwise coprime public exponents u1, . . . , uk

and derives a secret value s =
∏

i r
−1
i (mod ϕ(N)). The garbler then publishes the

reblinded adaptor elements T s
i,k.

3



This allows the evaluator to non-interactively compute any singly reblinded
adaptor elements:

T
1
ri

i,k = (T s
i,k)

∏
j ̸=i rj

The evaluator can also recover the plaintext Ti,k by raising T s
i,k to the power of∏

i ri.

5 Verifiability and Circuit Correctness

The evaluator can verify the correctness of the garbled circuit’s structure by check-
ing each gate in plaintext. Consequently, the garbler only needs to prove in zero-
knowledge that the circuit’s inputs and outputs (which are committed to) were
reblinded correctly. Thus, the proving complexity amounts to proving in zero-
knowledge about 2400 exponentiations with small exponents.

6 Communication Complexity and Onchain Foot-
print

The primary communication cost is the off-chain transfer of the garbled circuit. A
SNARK verifier circuit (e.g., Groth16) may have ∼5 billion gates. With an average
fan-out of 2-4 and a 256-byte RSA modulus, the adaptor elements dominate the
circuit size. For each fan-out connection, two adaptors are needed (for logic 0 and
1).

• Off-chain size:

5 · 109 gates · 2fan-out
gate

· 2elements

fan-out
· 256 bytes

element
≈ 5 TB

Although sharing the circuit takes about 1.8 days with a 250 Mbps upload
speed, this is a one-time setup cost.

• On-chain ‘assertTx’ size: For a proof of 128 bytes and a 20-byte public
input, the garbler must commit to the circuit’s input labels. This is optimized
by publishing encrypted labels during setup and revealing 16-byte decryption
keys on-chain.

148 bytes · 8wires
byte

·
(
2
labels

wire
· 16bytes

label
+ 1

dec key

wire
· 16 bytes

dec key

)
≈ 56 kB

• On-chain ‘disproveTx’ size: This transaction is minimal. It simply reveals
the hash of the output label for ’0’, signifying that the SNARK proof was
invalid.

7 Reusable Sub-Circuits

The circuit size of a Groth16 verifier is dominated by ≈ 30,000 field-multiplication
gates in a 256-bit prime field. Instead of garbling the full circuit we instantiate
a small library of sub-circuits—field multiplication, addition, subtraction and in-
version— and reuse each one k ≈ 30,000 times. All blocks share the public RSA
modulus N and exponent set {e, e1, . . . , e4}; only their wire labels differ.

4



Connector construction. Assume the last wire of sub-circuit i carries the label
yri1 and the first wire of sub-circuit i+1 expects x

ri+1

2 . Write the desired connector
as a product with disjoint randomness

Ci =
x
ri+1

2

yri1
=

xri
2

yri1︸︷︷︸
C

ri
a

· x ri+1−ri
2︸ ︷︷ ︸

C
ri+1−ri

b

.

During setup the garbler publishes the reblinded powers Csa
a and Csb

b with

sa = r1r2· · · rk mod pq,

sb = (r2 − r1)α1 · (r3 − r2)α2 · . . . · (rk − rk−1)αk mod pq,

and fresh random α1, . . . , αk ∈ Z∗
pq. They also reveal the public inverses

{r−1
i },

{(
(ri+1 − ri)αi

)−1
}
, {α−1

i }, i = 1, . . . , k,

where all r−1
i are chosen from a sequence of small primes such as 13, 17, 23, . . ..

Computation of connectors. The evaluator reconstructs every needed connec-
tor in two steps:

C ri
a =

(
Csa

a

)∏
j ̸=i r

−1
j ,

C
ri+1−ri
b =

(
Csb

b

)α−1
i

∏
j ̸=i((rj+1−rj)αj)

−1

,

then multiplies the two results to get Ci = Cri
a · Cri+1−ri

b .

Zero-knowledge proofs for inverse exponents. The only values that cannot
be checked in plaintext are the published inverse exponents themselves. For each
pair (A,B) where B is claimed to be A−1 mod pq, the garbler proves in zero knowl-
edge that AB ≡ 1 (mod pq). This is a single modular multiplication witness per
round of reblinding (i.e. ≈ 30000 multiplications in total) and is far cheaper than
an exponentiation proof.

Circuit size and performance. A 256-bit modular-multiplication sub-circuit
contains about 700,000 gates; with an average fan-out of 3 and two adaptor ele-
ments per wire, this amounts to

700,000× 2× 2× 256 bytes ≈ 720MB.

Each re-use of a sub-circuit contributes only the two 256-byte values
((ri+1 − ri)αi)

−1 and α−1
i . For k ≈ 30,000 invocations this is

k × 2× 256 B ≈ 15 MB,

while proving correctness requires only about 30000 modular multiplications. Thus,
the overall circuit size about 735 MB.

Avoiding telescoping with two-phase reuse. To rule out telescoping at-
tacks, we instantiate two copies of every sub-circuit type (e.g. Mul-A and Mul-
B) and forbid using the same instance twice in a row. Because consecutive hops
now move between labels rooted in different base elements, a product such as
(x(B))ri+1−ri · (x(A))ri+2−ri+1 no longer collapses into a single power, preventing
forward derivation of unpublished labels. The sub-circuit size and connector count
is doubled, so the off-chain payload becomes ≈ 1.44 GB.

5



8 Conclusion

BitVM3 significantly advances Bitcoin’s contracting capabilities by using an RSA-
based garbled circuit to move SNARK verification off-chain. This approach reduces
the on-chain footprint to a 56 kB assertTx and a 200-byte disproveTx, but requires
a multi-terabyte off-chain data setup; introducing reusable sub-circuits and their
connector elements cuts this requirement down to roughly 1.4 GB. While this
trade-off enables much more capital efficient trust-minimized bridges for second
layers like rollups and sidechains, future work must focus on reducing the off-chain
data burden even further and on exploring techniques for safely reusing the entire
verifier. Ultimately, BitVM3 demonstrates a viable path toward using Bitcoin as
a secure settlement layer for arbitrarily complex computations.

6


	Introduction
	Computing Gate Labels
	Setup for Tree Circuits (Backward Pass)
	Limitation of the Base Scheme: Fan-out >1

	Static Fan-out Handling with Adaptor Elements
	Reblinding
	Verifiability and Circuit Correctness
	Communication Complexity and Onchain Footprint
	Reusable Sub-Circuits
	Conclusion

