
BitVM3: Efficient Computation on Bitcoin

Robin Linus

Abstract

BitVM3 is a protocol for verifying SNARK proofs on Bitcoin that dramati-
cally reduces the on-chain footprint of its predecessor, BitVM2. By leveraging
optimistic computation with a garbled circuit, BitVM3 shifts the burden of
verification off-chain. This design enables an evaluator to generate a compact
fraud proof in the event of a dispute. The resulting on-chain transactions are
highly efficient: the assertion transaction is approximately 56 kB, while the
disproval transaction is just 200 bytes, reducing the on-chain cost of a dispute
by over 1,000 times compared to the previous design.

1 Introduction

BitVM3 significantly enhances the on-chain efficiency of SNARK proof verification
on Bitcoin. It addresses the primary drawback of BitVM2, where the ‘assertTx’
and ‘disproveTx’ were large (2-4 MB). In contrast, BitVM3 reduces the ‘assertTx’
to about 56 kB and the ‘disproveTx’ to a mere 200 bytes.
The core principle remains optimistic computation and the overall transaction
graph remains unchanged. However, instead of using Bitcoin Script for on-chain
computation, BitVM3 employs a garbled circuit to shift the computation off-chain.
This circuit is designed to conditionally reveal a secret, which acts as a fraud proof,
only if the garbler provides an invalid SNARK proof. This approach builds upon
ideas from Jeremy Rubin and Liam Eagen.

2 Computing Gate Labels

The garbling scheme is founded on an RSA-based system.

• Public Parameters: The garbler selects and publishes an RSA modulus N
and five public exponents: e, e1, e2, e3, e4. These exponents must be invert-
ible modulo ϕ(N), and for performance, small primes (e.g., 3, 5, 7, 11, 13)
are suitable. Let their inverses be d, d1, d2, d3, d4. Additionally, the derived
exponent h ≡ (e1e4d2 − e3) (mod ϕ(N)) must also be invertible.

• Label Generation: Using the secret trapdoor ϕ(N), the garbler computes
the secret input wire labels a0, a1, b0, b1 ∈ (Z/NZ)∗ by solving the following
system for output labels c0, c1:

ae0 · b
e1
0 ≡ c0 (mod N)

ae0 · b
e2
1 ≡ c0 (mod N)

ae1 · b
e3
0 ≡ c0 (mod N)

ae1 · b
e4
1 ≡ c1 (mod N)

1



The knowledge of ϕ(N) allows the garbler to efficiently find a unique solution.
The explicit solutions for the secret input labels are:

b0 ≡ (c1c
−1
0 )h

−1

(mod N)

b1 ≡ be1d2
0 (mod N)

a0 ≡ cd0 · b
−e1d
0 (mod N)

a1 ≡ cd0 · b
−e3d
0 (mod N)

2.1 Setup for Tree Circuits (Backward Pass)

For a circuit with a tree structure (fan-out of 1), the garbler generates labels by
working backward from the final output gate.

1. For the final gate G′, choose output labels c′0, c
′
1 and solve for its input labels

(a′0, a
′
1, b

′
0, b

′
1).

2. For a preceding gate G whose output feeds into the first input wire of G′, its
output labels are determined by G′’s requirements: c0 = a′0 and c1 = a′1.

3. Solve for gate G’s input labels (a0, a1, b0, b1) using these newly defined c0, c1.

4. This process is repeated backward through the circuit. Since each gate feeds
into exactly one subsequent gate, the output labels for every gate are uniquely
determined.

2.2 Limitation of the Base Scheme: Fan-out > 1

The backward-pass setup fails for general circuits where a wire’s fan-out is greater
than one. Consider a gate G’s output wire feeding into both gate G′ (requiring
input label a′k) and gate G′′ (requiring input label b′′k). The labels a′k and b′′k are
determined independently by the structures of G′ and G′′ respectively, meaning in
general a′k ̸= b′′k . Gate G, however, can only produce a single output label ck. This
creates an impossible constraint where ck must equal both a′k and b′′k .

3 Static Fan-out Handling with Adaptor Elements

To handle fan-out in general circuits, we introduce static multiplicative ”Adaptor
Elements.” If an output wire Wy (with labels ℓy,0, ℓy,1) feeds an input wire Wxi

that requires different labels, the garbler pre-computes and publishes a static factor
Ti,k:

ℓxi,k ≡ ℓy,k · Ti,k (mod N)

The garbler, knowing all base labels during setup, computes this factor as Ti,k ≡
ℓxi,k · (ℓy,k)−1 (mod N). These adaptors become part of the public circuit param-
eters.

4 Reblinding

To reblind the circuit, one can raise the input labels to a secret exponent. The
adaptor elements must also be reblinded. For k rounds of reblinding, the garbler
publishes pairwise coprime public exponents u1, . . . , uk and a secret-derived value
s =

∏
i u

−1
i (mod ϕ(N)). The garbler then publishes the reblinded adaptor points

T s
i,k.

2



This allows the evaluator to non-interactively compute any singly reblinded
adaptor point:

T
1
ui

i,k = (T s
i,k)

∏
j ̸=i uj

The evaluator can also recover the plaintext Ti,k by raising T s
i,k to the power of∏

i ui.

5 Verifiability and Circuit Correctness

The evaluator can verify the correctness of the garbled circuit’s structure by check-
ing each gate in plaintext. Consequently, the garbler only needs to prove in zero-
knowledge that the circuit’s inputs and outputs (which are committed to) were
reblinded correctly. Thus, the proving complexity amounts to proving in zero-
knowledge about 2400 exponentiations with small exponents.

6 Communication Complexity and Onchain Foot-
print

The primary communication cost is the off-chain transfer of the garbled circuit. A
SNARK verifier circuit (e.g., Groth16) may have ∼5 billion gates. With an average
fan-out of 2-4 and a 256-byte RSA modulus, the adaptor elements dominate the
circuit size. For each fan-out connection, two adaptors are needed (for logic 0 and
1).

• Off-chain size:

5 · 109 gates · 2fan-out
gate

· 2elements

fan-out
· 256 bytes

element
≈ 5 TB

Although sharing the circuit takes about 1.8 days with a 250 Mbps upload
speed, this is a one-time setup cost.

• On-chain ‘assertTx’ size: For a proof with 128 bytes of private inputs
and 20 bytes of public inputs, the garbler must commit to the input labels.
This is optimized by publishing encrypted labels during setup and revealing
16-byte decryption keys on-chain.

148 bytes · 8wires
byte

·
(
2
labels

wire
· 16bytes

label
+ 1

dec key

wire
· 16 bytes

dec key

)
≈ 56 kB

• On-chain ‘disproveTx’ size: This transaction is minimal. It simply reveals
the hash of the output label for ’0’, signifying that the SNARK proof was
invalid.

7 Conclusion

BitVM3 significantly advances Bitcoin’s contracting capabilities by using an RSA-
based garbled circuit to move SNARK verification off-chain. This approach reduces
the on-chain footprint to a 56 kB assertTx and a 200-byte disproveTx, but requires
a multi-terabyte off-chain data setup. While this trade-off enables much more cap-
ital efficient trust-minimized bridges for second layers like rollups and sidechains,
future work must focus on reducing the off-chain data burden. Ultimately, BitVM3
demonstrates a viable path toward using Bitcoin as a secure settlement layer for
arbitrarily complex computations.

3


