
BitVM2: Bridging Bitcoin to Second Layers

Robin Linus1, Lukas Aumayr2, Alexei Zamyatin3,
Andrea Pelosi2,4,5, Zeta Avarikioti2,6, Matteo Maffei2

1 ZeroSync
2 TU Wien

3 BOB
4 University of Pisa

5 University of Camerino
6 Common Prefix

Abstract. BitVM2 is a novel paradigm that enables arbitrary program execution in Bitcoin, thereby
combining Turing-complete expressiveness with the security of Bitcoin consensus. At its core, BitVM2
leverages optimistic computation, assuming operators are honest unless proven otherwise by challengers
through fraud proofs, and SNARK proof verification scripts, which are split into sub-programs that are
executed within Bitcoin transactions. As a result, BitVM2 ensures program correctness with just three
on-chain transactions. BitVM2 significantly improves over prior BitVM designs by enabling, for the first
time, permissionless challenging and by reducing the complexity and number of on-chain transactions
required to resolve disputes. Our construction requires no consensus changes to Bitcoin.
BitVM2 enables the design of an entirely new class of applications in Bitcoin. We showcase that by
presenting BitVMBridge, a protocol that enhances prior Bitcoin bridges by reducing trust assumptions
for the safety of deposits from an honest majority (t-of-n) to existential honesty (1-of-n) during setup.
To guarantee liveness, we only require one active rational operator (while the others can be malicious).
Any user can act as challenger, facilitating permissionless verification of the protocol.

1 Introduction

Bitcoin, similar to other Layer 1 blockchains, faces significant scalability challenges, driving the need for
Layer 2 (L2) solutions to enhance network performance. In Bitcoin’s case, L2s can also serve to extend
scripting functionality to match the one of expressive blockchains like Ethereum. While other L1s have
successfully integrated L2s, most notably Ethereum, Bitcoin’s implementation is hindered by the limitations
of its scripting language. Although we can express any program in Bitcoin script, contrary to common
misconceptions in the community, these programs quickly exceed the Bitcoin block size and stack limits due
to inefficiencies stemming from a very limited set of natively available operations.

Bridges that facilitate the transfer of BTC from Bitcoin to other blockchains as “wrapped” assets are an
essential component of L2 architectures. These bridges are necessary for managing deposits and withdrawals
from and to the underlying L1. At the core of every bridge is the critical issue of custody – how BTC is
securely stored while its wrapped counterpart is utilized on other blockchains. Currently, almost all Bitcoin
bridges rely on multi- or threshold signature schemes, where a group of t-of-n signers is entrusted with
safekeeping BTC. Although some bridges employ economic security through collateralization [25], these
designs face scalability challenges due to high capital requirements and have thus achieved limited adoption
in practice.

Contribution. This paper brings two fundamental contributions, the design of BitVM2, a new paradigm
that enables execution of arbitrary programs in Bitcoin, and, based on that, BitVMBridge, a novel protocol
to bridge BTC to Bitcoin layer 2 systems.

– Similar to Truebit[21] and Arbitrum [10], BitVM2 makes use of optimistic computation where the com-
puting party (operator) is assumed to be honest until proven guilty using so-called fraud proofs. In

BitVM2 a set of operators commits (on-chain) to correctly executing a SNARG [5] verifier (off-chain)
for an arbitrary program, such that any observing party (challenger) can disprove a faulty computation
within a pre-defined challenge period. We implement a Groth16 SNARK [7] verifier program in Bitcoin
script [26] and split it into sequential sub-programs, each of which is small enough to be executed in
a Bitcoin block. An operator challenged by a challenger must reveal on-chain the intermediary results
of these sub-programs, alongside the input and output states of the SNARK verifier. By design, if the
operator is trying to cheat, one of the published intermediary states will be incorrect, i.e., different from
that of the sub-program the operator committed to. To disprove a faulty operator’s claim, a challenger
must simply execute the respective sub-program on-chain in a Bitcoin transaction, showing a mismatch
between the computation and the operator’s claim. Following these design principles, BitVM2 ensures
that anyone can challenge and disprove a faulty operator within only 3 on-chain transactions.
BitVM2 is inspired by the BitVM paradigm proposed by Linus [14] and makes significant improvements
in terms of computational and communication complexity, as well as security. While in BitVM and
similar designs, only a fixed set of operators can perform challenges, BitVM2 supports for the first
time permissionless challenging, i.e., any user with a Bitcoin full node can challenge faulty operators.
Furthermore, the original BitVM design required up to 70 on-chain transactions (over a period of multiple
weeks or even months in practice) to disprove a faulty operator, whereas BitVM2 requires only 3 on-chain
transactions that can be executed within 1-2 weeks, achieving similar practical properties as Ethereum
L2s.

– We showcase the groundbreaking design opportunities enabled by BitVM2 by presenting BitVMBridge, a
novel protocol to bridge BTC to Bitcoin layer 2 systems. BitVMBridge significantly improves over existing
Bitcoin bridge designs, reducing trust assumptions from an honest majority of signers to existential
honesty while necessitating only one active rational operator and rational challengers to safeguard the
protocol.

Organization. We first present an (informal) model, protocol goals, and protocol overview in Section 2.
We then introduce the necessary background, notation, and building blocks in Sections 3 and 4. We combine
these building blocks to introduce BitVM2, a general function verification protocol operating securely on
Bitcoin in Section 5. Subsequently, we outline a bridge protocol based on BitVM2, termed BitVMBridge, in
Section 6. In the current draft, Sections 7 and 8 sketch our plan for the security analysis and limitations and
extensions sections, respectively, that will be completed at a later time in the full version.

2 Model and Protocol Overview

In this section, we present our model and assumptions and provide a high-level overview of the BitVM2-based
bridge protocol. The security properties of BitVM2 may be of independent interest and will be discussed and
proven in the security analysis as a stepping stone to the security of the bridge.

2.1 Assumptions

A blockchain or distributed ledger protocol takes as input transactions (provided by users) and outputs an
immutable transaction order that eventually includes all provided transactions. We assume Bitcoin and a
sidesystem maintain robust public transaction ledgers that have persistence and liveness, as defined in [4].
We denote as ∆L the liveness parameter, i.e., the upper bound for how long it takes an honest actor to
include a transaction in the underlying blockchain.

We assume that the sidesystem leverages Bitcoin for its consensus, for example, is a so-called roll-up that
uses data commitments posted to the Bitcoin blockchain for consensus on the transaction order, paired with
some form of state transition verification. The strawman protocol is illustrated in Fig. 5.

We assume a synchronous network, i.e. , all messages broadcast to the network will be delivered to all
parties within a known time bound. We make the usual cryptographic assumptions: the participants are
computationally bounded and cryptographically secure communication channels, hash functions, signatures,
and encryption schemes exist. We abuse the notion of blockchains to also refer to their transaction ledgers.

2

2.2 System Model and Goals

In our setting, a bridge protocol pertains two main operations: 1) The Peg-In, where a user, Alice, deposits
funds uB on Bitcoin, which are then represented in a sidesystem as “wrapped BTC” (Bs); 2) The Peg-Out,
where another user, say Bob, claims these funds u from the sidesystem to the Bitcoin blockchain.

Besides the roles of depositor (Alice) and beneficiary (Bob), in our bridge protocol we additionally have
the following participant roles:

– Operators (O1, ..., Om) 7 : The operators are responsible for executing a pre-agreed program f ; in the
case of our bridge, this is the peg-out process. The operators are assumed to be rational, i.e., they are
profit-maximizing agents.

– Challengers: The challengers ensure the safety of the peg-out process by challenging an operator in
case of misbehavior. Anyone can act as a challenger, including the operators. We assume that challengers
are rational.

– Signers (S1, ..., Snq: A committee of n signers that is responsible for the correct setup of a BitVM2
instance for a pre-agreed program f . One of the n signers is assumed to be honest (existential honesty).
As we explain in Section 4.2, this (committee and thus this) assumption is not necessary if the underlying
blockchain supports covenants.

We assume all participants are computationally bounded, i.e., cryptographic primitives are secure. We
first show that the setup of the bridge is secure given a signer committee with existential honesty. Under this
assumption, we prove the BitVM2-bridge is secure when all challengers are rational and at least one active
operator is rational (the rest can be malicious). We underscore here that while operators are predefined
entities (permissioned), anyone can act as a challenger (permissionless) and thus any party wishing to exit
the sidesystem can act as a challenger to ensure safety.

Protocol Goals. The following refers to the bridge protocol and encompasses both its safety and liveness.

– Balance security: Any user holding v coins in the sidesystem, can burn them and then, and only then,
eventually claim v´fO coins on the main blockchain, where fO ě 0 is a fee charged to cover the bridge’s
operating costs.

2.3 BitVM2 Protocol Overview

The core idea of BitVM2 is to enable arbitrary computations to occur optimistically, i.e., the computing
party (operator) is assumed to be honest unless proven guilty by a challenger using so-called fraud proofs.
This design choice stems from the limited storage and computational capabilities enabled by the Bitcoin
protocol. We utilize several tricks in BitVM2 to achieve this goal while inheriting Bitcoin security.

1. We start by compressing the program using SNARKs. In BitVM2 we do not verify the program execution
itself but the correct execution of the SNARK verifier verifying a proof for the program execution.

2. We implement the SNARK verifier in Bitcoin Script. The program size (e.g. 3GB for Groth16) exceeds
the block size by magnitudes.

3. We split the verifier into sub-program chunks, each at most 4MB in size. These chunks can be executed
in a Bitcoin transaction/block. Thereby, the sub-programs are sequential : program 2 takes as input the
output of program 1 and so on.

4. The operator commits to executing the program (i.e., SNARK verifier) correctly during setup. Pre-
signing carefully crafted Bitcoin transactions and Taproot trees ensures the operator can only withdraw
funds in a way that can be challenged in case of misbehavior.

5. When the operator wants to withdraw funds from BitVM2, e.g. take out BTC as part of the peg-out
process of a bridge, they must post the output of the SNARK verifier on-chain.

7 We expect the cardinality of this committee to depend on the maximum amount of xBTC held by the bridge and
the fees required for the operators.

3

6. Anyone can check this data against their local execution of the SNARK verifier, given the publicly known
inputs (data availability problem aside). If they disagree, anyone can post an on-chain challenge, forcing
the operator to reveal more data on the computation.

7. If challenged, the operator must reveal all intermediary outputs of the sub-programs in an on-chain
transaction.

8. Now, anyone can find the incorrect intermediary result and prove that the operator cheated by exe-
cuting the corresponding sub-program chunk on-chain, showing that the results do not match. This
invalidates the operators BitVM2 withdrawal transaction and slashes (some) limited amount of collateral
(reimbursing on-chain costs).

In summary, BitVM2 allows anyone to challenge and slash a faulty operator with 3 on-chain transactions,
with a delay of no more than 2-3 weeks. A high-level overview of the BitVM2 protocol is provided in Fig. 1.

Fig. 1. Simplified overview of the BitVM2 transaction flow. The SNARK verifier program fpxq “ y is split into
f1, f2, ..., fk with intermediary results z0, ..., zk. A challenged operator must reveal the intermediary states in the
Assert transaction. This allows a challenger to disprove a false claim of an operator by executing the disputed sub-
program fi in a Bitcoin transaction.

3 Background and Notation

3.1 Digital signatures

A digital signature scheme Σ is a tuple of three algorithms: KeyGen, Sign, and Vrfy.

– ppk, skq Ð Σ.KeyGenpλq is a probabilistic, polynomial time (PPT) algorithm that takes a security
parameter λ as input and returns a key pair, consisting of a secret (or private) sk and a public key pk.

– σ Ð Σ.Signpsk,mq is a PPT algorithm that takes as input a secret key sk and a message m P t0, 1u˚,
and outputs an authentication tag, or signature, σ.

– tTrue,Falseu Ð Σ.Vrfyppk, σ,mq is a deterministic, polynomial time (DPT) algorithm that takes as input
a public key pk, a signature σ and a message m P t0, 1u˚, outputs True iff σ is a valid signature for m
generated by the secret key sk, corresponding to pk, i.e., ppk, skq is a key pair generated by Σ.KeyGen. For
consistency with Bitcoin Script, we will refer to this as CheckSigpkpσq, the message being the transaction.

In this work, we make use of signature schemes that are EUF-CMA secure [6].

4

3.2 Succinct non-interactive arguments (SNARGs)

For this definition, we closely follow, e.g., [5,7]. Let R Ð Rpλq be a relation generator that takes as input
a security parameter λ, and returns a polynomial time decidable binary relation R. We denote ϕ as the
statement and w as the witness for the pairs pϕ,wq P R. We define an efficient publicly verifiable non-
interactive argument for R as a tuple of three PPT algorithms: Setup, Prove, and Vrfy.

– crs Ð SNARG.SetuppRq takes as input a relation R, and outputs a common reference string crs.
– π Ð SNARG.ProvepR, crs, ϕ, wq takes as input a common reference string crs along with pϕ,wq P R, and

returns an argument π.
– tTrue,Falseu Ð SNARG.VrfypR, crs, ϕ, πq takes as input a common reference string crs, a statement ϕ,

and an argument π and returns True or False, (informally) depending on whether or not π is a valid
argument.

pSetup,Prove,Vrfyq is a non-interactive argument for R if it has perfect completeness and computational
soundness, as defined in [7,5]. On a high level, the former means that given any true statement ϕ, an honest
prover can convince an honest verifier with overwhelming probability; the latter means that it is not possible
to prove a false statement, i.e., convince the verifier if no witness exists, also with overwhelming probability.
Finally, a non-interactive argument, where the verifier runs in polynomial time in λ ` |ϕ| and the proof size
is polynomial in λ, is denoted as (preprocessing) succinct non-interactive argument (SNARG). Note that
while we later use an implementation of [7], we do are not interested nor do we utilize the zero-knowledge
property or the stronger notion of succinct non-interactive arguments of knowledge (SNARKs).

3.3 Lamport digital signature scheme

Let h : X Ñ Y be a one-way function, where X :“ t0, 1u˚ and Y :“ t0, 1uλ, for a given security parameter
λ. Let m P t0, 1uℓ be a ℓ-bit message, with ℓ P Ną0. A Lamport digital signature scheme [12] Lamp consists
of a triple of algorithms (KeyGen,Sig,Vrfy), where:

– ppkM, skMq Ð Lamp.KeyGenpℓq (Algorithm 1), is a PPT algorithm that takes as input a positive integer
ℓ and returns a key pair, consisting of a secret key skM and a public key pkM which can be used for
one-time signing a ℓ-bit message. For readability, M “ t0, 1uℓ is an alias for the ℓ-bit message space.

– cm Ð Lamp.SigskM
pmq (Algorithm 2), is a DPT algorithm parameterized by a secret key skM, that takes

as input a message m P M and outputs the signature cm, which we also call (Lamport) commitment.
– tTrue,Falseu Ð Lamp.VrfypkM

pm, cmq (Algorithm 3), is a DPT algorithm parameterized by a public key
pkM that takes as input a message m, a signature cm, and outputs True iff cm is a valid signature for
m generated by the secret key skM, corresponding to pkM, i.e., ppkM, skMq is a key pair generated by
Lamp.KeyGen.

Lamport signatures are secure one-time signatures. We write skM and pkM to denote the secret key and the
public key associated with the message space M. This key pair can be used to sign any message in M, but
once signature cm is created, the key pair is committed to one specific message m P M. In other words, as
long as only one message m P M is signed with a single key pair, no polynomially bounded adversary will
be able to forge a signature over another message m1 ‰ m for that key pair with non-negligible probability.

More concretely, when a party signs a message using a Lamport signature scheme, they reveal, for every
bit mris of the message, one of the two preimages xr0, is and xr1, is, with i “ 0, . . . , ℓ ´ 1. This means that
the signer is claiming that mris is either 0 or 1. Notice that committing to an ℓ-bit message m is just the
same as making ℓ commitments to 1-bit messages (one for each bit of m).

For a formal definition of one-time security and the proof that Lamport signatures are one-time secure
digital signature schemes (assuming the existence of one-way functions), refer to, e.g., [2]. Lamport signatures,
and in particular Algorithm 3, is implementable in Bitcoin Script; [26] contains a sample implementation.

Since we leverage Lamport signatures to enable a party to commit to a bit (and thus to a message),
from now on, we will refer to the Algorithm 2 as LampComm instead of Lamp.Sig and to the Algorithm 3 as
CheckLampComm instead of Lamp.Vrfy.

5

Algorithm 1 The key generation algorithm Lamp.KeyGen for a ℓ-bit messages space, which we shall call
M. Throughout these algorithms, we use matrix notation, i.e., for a given two-dimensional matrix a, ari, js

refers to the element at row i and column j of it.

1: function Lamp.KeyGen(ℓ)

2: Let skM Ð

˜

xr0, 0s, . . . , xr0, ℓ ´ 1s

xr1, 0s, . . . , xr1, ℓ ´ 1s

¸

, where every element xri, js is sampled uniformly at random

from the set X;

3: for i “ 0, 1 and j “ 0, . . . , ℓ ´ 1 do

4: yri, js Ð hpxri, jsq;

5: end for

6: Let pkM Ð

˜

yr0, 0s, . . . , yr0, ℓ ´ 1s

yr1, 0s, . . . , yr1, ℓ ´ 1s

¸

;

7: return pskM, pkMq.

8: end function

Algorithm 2 The Lamport signature algorithm Lamp.Sig, parameterized over a secret key skM for a ℓ-bit
sized message space M.

1: function LampSigskM(m)

2: for i “ 0, . . . , ℓ ´ 1 do

3: Let cmris Ð skMrmris, is;

4: end for

5: return cm.

6: end function

Algorithm 3 The Lamport verification algorithm Lamp.Vrfy, parameterized over a public key pkM for a
ℓ-bit message space M.

1: function Lamp.VrfypkM
(m, cm)

2: for i “ 0, . . . , ℓ ´ 1 do

3: if hpcmrisq ‰ pkMrmris, is then

4: return False;

5: end if

6: end for

7: return True.

8: end function

6

3.4 Transactions in the UTXO model

We identify a user U on a ledger L by the key pair ppkU, skUq of a signature scheme Σ, used to prove ownership
over coins. We let σUpmq be the digital signature of U over a message m P t0, 1u˚. If it is clear what message
is signed, we sometimes use σU as shorthand.

In the unspent transaction output (UTXO) model, each transaction output is associated with a coin
value (in B). An output is defined as an attribute tuple out :“ paB, lockScriptq, i.e., it consists of an amount
out.a P Rě0 of coins B and the condition(s) out.lockScript under which it can be spent. A transactionTxmaps
a non-empty list of existing, unspent outputs, to a non-empty list of newly created Tx.outputs. To distinguish
them, we refer to the former as Tx.inputs of the transaction. An input, in :“ pPrevTx, outIndex, lockScriptq,
uniquely identifies one existing output by referencing a transaction PrevTx and an output index outIndex,
and is repeating the output’s spending condition lockScript for convenience.

Formally, we define a transaction as an Tx :“ pinputs,witnesses, outputsq, which besides the aforemen-
tioned inputs Tx.inputs :“ rin1, . . . , inns and outputs Tx.outputs :“ rout1, . . . , outms contains the witness
data, Tx.witnesses :“ rw1, . . . ,wns, which is the list of the tuples that fulfill the spending conditions of the
inputs of the transaction, one witness for each input. The locking script, expressed in the ledger’s scripting
language, is executed with the corresponding witness as script input. If this execution returns False, the
transaction is invalid. If it returns True, the spending condition is fulfilled.

For a transaction to be valid, all witnesses must fulfill the locking condition of their corresponding input;
all of the transaction’s inputs must be unspent; the sum of the value of the outputs must be smaller or equal
to the sum of the value of the inputs. If it is smaller, the difference is given to the miners.

Transaction spending conditions. We are particularly interested in Bitcoin, which has a stack-based
scripting language. We now describe a subset of spending conditions supported on Bitcoin that are used in
this paper. Each of the following can be combined using logical operators ^ (and), _ (or) to create more
complex spending conditions.

– Signature locks. An output locked with CheckSigpkU can only be spent, if the spending transaction is

signed with the secret key corresponding to the key pair pskU, pkUq.

– Multisignature locks. To fulfill a multisignature spending condition, a certain number k out of n
signatures are required. For example, for users A and B, a 2-of-2 multisignature spending condition is
denoted as CheckMultiSigpkA,B

and the respective signature as σA,B .

– Timelocks lock a transaction output until a specified time in the future (absolute timelock) or until
a specific time after the transaction is included on-chain (relative timelock). We denote the former as
AbsTimelockp∆q, and the latter as RelTimelockp∆q. In the following, we use timelocks in conjunction
with other spending conditions. For instance, if the UTXO Tx.out1 has locking script lockScript :“
RelTimelockp∆q ^ CheckSigpkU , the user U can spend the UTXO Tx.out1 after that a certain amount of
time T has passed from the moment that Tx.out1 has been published on-chain.

– Taproot Trees [23], or Taptrees, make a UTXO spendable by satisfying one among multiple spending
conditions. The spending conditions are (Tap)leaves of a Merkle tree. To spend a UTXO that has a
Taptree as a locking script, a user needs to provide a witness for one of the leaves along with a Merkle
inclusion proof of such leaf into the Taptree. In the following, we denote the Tapleaves of a Taptree locking
script as xleaf1, . . . , leafry; when a user fulfills script leafi to unlock the j-th UTXO of the transaction
Tx, we write the corresponding input as pTx, j, xleafiyq. Every time that a user spends a UTXO via a
Tapleaf of a Taptree, we assume that the user has provided a valid Merkle inclusion proof for the Tapleaf.

– Other conditions. We denote with True a condition that is always fulfilled and with False a condition
that can never be fulfilled. In the latter case, the coins can not be redeemed, and they are burnt instead.

Additionally, we use ˚ to denote a transaction input, witness, or output that can be anything (valid according
to Bitcoin consensus rules), but is irrelevant to our protocol.

7

Combining spending conditions. When we need to express long spending conditions, we explicitly
give their pseudocode, combining the spending conditions presented above with other standard language
constructions that are expressible in Bitcoin Script, e.g. , the if-then-else construction. Specifically, when in
a long script LongScript we append the Verify keyword to one of its sub-spending conditions, say script, that
returns either True or False, we aim to mimic the behavior of the Bitcoin OP VERIFY opcode: if script returns
True, pop True from the stack and go on with the rest of the script execution; if script returns False, mark
the transaction as invalid (and thus fail to fulfill LongScript).

SIGHASH flags. SIGHASH flags specify which part of the transaction data is included in the hash that is
signed as part of a signature lock. These flags are primarily used to help coordinate multiple users in creating
and signing a transaction.8

– ALL: All inputs and outputs are signed. Transaction is only valid as is.
– NONE: All outputs are signed but no inputs. Any number inputs can be used to fund this transaction.
– SINGLE: All inputs but only one output are signed, i.e. , other outputs can be added arbitrarily.

In addition, the ANYONECANPAY flag signs only one input and can be combined with the other flags to
create more advanced constructions.

4 BitVM2 Building Blocks

In this section, we present a set of Bitcoin script primitives that we make use of in the BitVM2 design.

4.1 Stateful Bitcoin scripting via one-time signature public key hard-coding

Even though the Bitcoin scripting language is stateless, clever use of one-time digital signatures schemes,
e.g., Lamport signatures, makes it possible to preserve a state over different Bitcoin transactions. Consider
the following example. Let a user U hold a Lamport key pair pskM, pkMq associated with M, the set of all
v-bit messages. We can think of M as a variable that can hold any v-bit string. Using this mental model, U
can assign a value to m to M, by creating the commitment cm Ð LampCommMpmq.

Hard-coding CheckLampCommpkM
for a public key pkM in the locking script of multiple outputs, such a

variable assignment can not only be checked but also carried over from one output to another, thus enabling
a (global) state in Bitcoin. This is done by reading m and cm from the unlocking script of one output and
passing them via the unlocking script to another output.

4.2 Emulating covenants using presigned transactions

In Bitcoin Script, covenants (e.g., [16,19,8]) are a proposed class of spending constraints that would allow
a transaction’s locking script to impose restrictions on how the coins locked in a UTXO can be spent in the
future. At the time of writing, covenants have not yet been added to Bitcoin. If added to Bitcoin Script,
covenants would allow to restrict the outputs of subsequent transactions. A simple example of a covenant is
to restrict a UTXO spendable by Bob such that it can only be spent if the spending transaction allocates
5 BTC to a user Alice. Among other things, covenants enable the storage of a state and execution of a
state machine through a series of different transactions. This provides for more expressive smart contract
capabilities and would enable more complex applications in Bitcoin.

In BitVM2, we need to restrict how UTXOs can be spent such that operators spending from BitVM2 can
be challenged by the challengers. In the absence of covenants, we can emulate their functionality using a
committee of n signers S1, . . . Sn, where at least one is honest. In practice, this idea can be implemented

8 See https://en.bitcoin.it/wiki/Contract#SIGHASH_flags. A helpful visualization can be found here: https:
//tinyurl.com/mr2kshzd

8

https://en.bitcoin.it/wiki/Contract#SIGHASH_flags
https://tinyurl.com/mr2kshzd
https://tinyurl.com/mr2kshzd

such that anyone is allowed to join the committee as long as they are active (inactive users are kicked
from the committee to prevent denial of service), and thus honest users could convince themselves of this
existential honesty assumption by joining the committee [3]. Specifically, during the setup phase of every
BitVM2 instance, we introduce the following steps:

1. Each signer generates a fresh key pair.
2. For each transaction output that should be spendable only in a specific way, we introduce an additional

n-of-n multi-signature spending condition CheckMultiSigC, i.e., all signers must collaboratively create the
signature σC to spend the UTXO.

3. For each of these UTXOs, the signers pre-sign the specific transactions that should be used to spend
the output. Each operator receives a dedicated set of pre-signed transactions, spendable by them under
certain conditions.

4. Finally, the signers delete their keys.

This mechanism ensures that as long as one of the signers is honest and deletes their key, the UTXOs can
only ever be spent using one of the pre-signed transactions, i.e., in the intended way of the protocol. We
can further use signature aggregation schemes to improve the efficiency of the setup, reducing the on-chain
footprint. As a side note, if all protocol parties are known upfront, e.g., in a 2-party or in a permissioned
protocol, they can form the committee.

For readability and to highlight that enabling covenants can eliminate the need for the committee, we
abstract this emulation and henceforth use CheckCovenant to refer to a spending condition on outputs.
Our transaction graphs and formal transaction definition show, which transactions can spend those out-
puts: No transactions other than the ones we defined can spend them. In other words, whenever we write
CheckCovenant (e.g., in Fig. 2), this can be replaced with the n-of-n multi-signature spending condition
CheckMultiSigVerifypkCpσCq paired with a transaction pre-signed by the signer committee or by an actual
covenant introduced to Bitcoin in the future. We use Covenant in the witness of transactions to indicate that
the conditions of the Covenant were met.

4.3 Connector outputs

Connector Outputs9 is a technique to ensure that only one of a given set of Bitcoin transactions is valid
and can be included in the Bitcoin blockchain. Specifically, we create multiple transactions that require as
input the same connector output. We achieve this by introducing an additional input (that references the
connector output) to each transaction and set the SIGHASH ALL flag, requiring all inputs to be present for the
transaction to be valid. As soon as one of these transactions is included in the Bitcoin blockchain, spending
the connector output, the other transactions become invalid. The connector output can thereby specify a
variety of custom spending conditions. In BitVM2 we use connector outputs to invalidate a faulty operator’s
attempt to spend funds from the BitVM2 instance after a successful challenge by a challenger.

5 BitVM2: General Function Verification on Bitcoin

In this section, we show how arbitrary functions can be computed in Bitcoin using Bitcoin Script without
the need for consensus changes. We use this towards building the BitVM2-based bridge protocol, but note
that such a building block is interesting as a standalone construction. Suppose that a party O, the operator
(acting as prover), wants to prove on Bitcoin that for a given program f written in Bitcoin Script, an input
x and an output y P V out of a set of possibly multiple valid outputs V , the assertion fpxq “ y holds.

Contrary to common beliefs in the community, Bitcoin Script does support universal computation, i.e.,
we can represent any program in (a likely very large) Bitcoin Script. However, Bitcoin’s consensus rules
impose some limitations on the size of a valid block, and, in turn, on the size of a script.10 Since f is a

9 For example, described in https://tinyurl.com/2p566ynp.
10 At the time of writing, after the SegWit soft-fork, the maximum block size is 4 MB (as discussed in https:

//tinyurl.com/5e4kudyj); as a consequence, it is not possible to write scripts bigger than 4 MB.

9

https://tinyurl.com/2p566ynp
https://tinyurl.com/5e4kudyj
https://tinyurl.com/5e4kudyj

Bitcoin Script program, executing f (or any sub-program fi, for some i P t1, . . . , ku) means manipulating
data in a stack that can store a fixed number of elements.11 Let the content of the stack at any given point
in the program execution be the state of the program. Using such terminology, the input x of f and the
output y are the initial and the final state of the program, respectively.

In BitVM2, some party stakes a deposit a deposit of dB, where d ě 0, which the operator can claim after
successful verification. The deposit d can be one of two things, depending on the use case of f :

– A deposit by a third party, e.g., requesting a computation, that is paid to the operator after successful
execution;

– A collateral deposit by the operator that is reclaimed by the operator after correct execution, in cases
where the payment for the computation is processed outside of BitVM2 such as the BitVMBridge described
in Section 6.

5.1 Naive Function Verification

In the following, we leverage Lamport signatures and Taptrees to enable the operator O to assert on Bitcoin
that fpxq “ y even if the script needed to encode the program does not fit into a block. To achieve this, we
devise an optimistic verification mechanism that allows any user (challenger) to disprove the operator O if
the provided assertion is incorrect.

1. Setup. First, we split the program f into k sub-programs f1, . . . , fk, where each sub-program is below
the script size limit, i.e., can be executed in a Bitcoin block. Let zi be the intermediate state after the
execution of the sub-program fi; we have that

z1 :“ f1pz0q,

z2 :“ f2pz1q,

. . . ,

zk :“ fkpzk´1q

where z0 :“ x and zk :“ y. For each element in tz0, z1, . . . , zku, the operator O creates a fresh Lamport
keypair pskz0 , pkz0q, pskz1 , pkz1q, . . . pskzk , pkzkq. Next, the operator creates three transactions where they
hard-code these public keys in the locking scripts:Assert,Disprove, and Payout that are defined below
in Eqs. (1) to (3) and illustrated in Fig. 2. Using Covenants, we restrict the way the involved outputs
can be spent, i.e., only via these specific transactions. As explained in Section 4.2, we emulate Covenants
by having the signer committee pre-sign Assert, Disprove and Payout during the setup phase and
sharing them with the involved parties, who check the validity of such signatures.

2. Execution. The operator O executes the sub-programs f1, . . . , fk off-chain, given input x “ z0 and in
doing so, produces intermediary states z1, . . . , zk´1 as well as the final state y “ zk. This output zk
should be in the set of valid outputs V , e.g., V could be tTrueu.

3. Commit and Challenge Period. The operator then publishes an Assert transaction (specified
in Eq. (1)) on-chain, committing to z0, . . . , zk, claiming correct execution of the program. The input
to the Assert transaction can be any output (indicated by ˚) holding dB that must require at least the
following conditions for spending: (i) the requirements of the Covenant, i.e., can only be spent by the
Assert transaction, (ii) the operator’s signature, and (iii) a valid Lamport commitment cz0 , . . . , czk for
each of the public keys pkz0 , . . . , pkzk . We will use this in constructions presented later in this paper.

Assert :“
´

input “ rp˚qs,

witness “ rp˚,Covenant, z0, . . . , zk, cz0 , . . . , czkqs,

output “ rpdB, xDisproveScript1, . . . ,DisproveScriptk,

RelTimelockp∆Aq ^ CheckCovenant ^ CheckSigpkOyqs

¯

,

(1)

11 Bitcoin protocol rules limit the size of the stack to 1000 elements (https://tinyurl.com/mt7ex7xh), where each
element can be up to 5 bytes (https://en.bitcoin.it/wiki/Script).

10

https://tinyurl.com/mt7ex7xh
https://en.bitcoin.it/wiki/Script

The Assert transaction creates a new output with the following script. Let k ` 1 Tapleaves form a
Taptree, specifying the following spending conditions.
– Happy path (Payout). The last, pk`1q-th leaf can be spent after the pre-defined challenge period

∆A by (i) fulfilling the condition of the Covenant and (ii) providing the operator signature.
– Unhappy path (Disprove). The first k leaves handle dispute cases. The leaf at position i (for

i P t1, . . . , ku) hard-codes the sub-program fi, the public key pkzi´1 for the program input zi´1

and the public key pkzi for the program output zi. Spending such a leaf requires (i) fulfilling the
conditions of the Covenant (ii) correct commitments for the input and output public keys of the
program fi, (iii) and that zi ‰ fipzi´1q holds for the values corresponding to these commitments,
i.e., the operator committed to an incorrect intermediary state zi for a sub-program fi. We present
the detailed output script (the DisproveScript) in Algorithm 4.

Given this information, an incorrect claim made by a faulty operator, i.e., if zi ‰ fipzi´1q for some
i P t1, . . . , ku, can be disproved by any observing party within the challenge period ∆A by publishing a
Disprove transaction.

4. (i) Payout. If no one publishes the Disprove transaction, after some time ∆A, the operator can spend
the output of the Assert transaction by publishing the Payout transaction and claiming the funds
for themselves.

Payout :“
´

input “ rpAssert, 0, xRelTimelockp∆Aq ^ TakeScriptyqs,

witness “ rpCovenant, σOqs,

output “ rpdB,CheckSigpkO qs

¯

,

(2)

(ii) Disprove. Using the operator’s commitments to z0, . . . , zk in the witness of the Assert transaction,
anyone can disprove an incorrect claim about the intermediary states of the program execution, i.e.,
if zi ‰ fipzi´1q for some i P t1, . . . , ku. This is done by publishing the Disprove transaction specified
in Eq. (3) that spends the output of the Assert transaction. Specifically, a locking script of one of
the first k leaves must be fulfilled. This is possible if and only if the operator made an incorrect
claim about one of the intermediary states z0, . . . , zk. Anyone can read the commitments made by
the operator O from the chain and provide them as inputs to the script in one of the leaves. At this
point, the script is verified on-chain and all (honest) Bitcoin full nodes come to consensus that the
operator was faulty.

Disprove :“
´

input “ rpAssert, 0, xDisproveScriptiyqs,

witness “ rpCovenant, zi´1, zi, czi´1
, cziqs,

output “ rpbB,Falseq, paB,Trueqs

¯

,

(3)

The outputs of this transaction determine what happens with the dB provided by the operator.
Specifically, the Disprove transaction must create a new output that burns part bB of the deposit
dB, where 0 ď b ď d. By setting the SIGHASH flag [22] to SIGHASH SINGLE, the aforementioned
input and output become immutable. This allows any user to publish the Disprove transaction
while adding further outputs where they can, e.g., claim the remaining aB as bounty or to cover
transaction fees, where a “ d´ b. For simplicity, we denote this in the above definition as paB,Trueq.
This mechanism provides an incentive for users to publish this transaction and allows indeed anyone
to do so and claim the money.

We illustrate the transactions involved in the function verification mechanism on Bitcoin in Fig. 2.

11

Assert

In Out

dB dB
commit

Payout

dB

In Out

dB Operator

Disprove

aB

In Out

dB bB
commit
zi´1, zi Challenger

Burn

CheckCovenant^

(check commitments for zi´1, zi
^zi ‰ fipzi´1q_zk R V)

z0, . . . , zk

˚

CheckCovenant^check
commitments for z0, . . . , zk

DisproveScripti

AssertScript

SIGHASH SINGLE

CheckCovenant^

Operator^RelTimelock(∆A)

Fig. 2. Illustration of the transactions Assert, Disprove and Payout. The input of Assert can be any UTXO,
signified by ˚, however, we require the spending script to be a Covenant and to include commitments for z0, . . . , zk.
To increase readability, we introduce the following color-coding: gray rounded rectangles depict the transactions. We
denote the BTC locked in a transaction output by drawing a green rectangle and the BTC spent by a transaction
input by drawing an orange rectangle. Blue arrows denote spending paths taken by the operator and red arrows
denote spending paths taken by someone else. Above the arrows, we write the conditions to spend the outputs from
which the arrows start. Gray dashed rectangles around some of the inputs and outputs of a transaction denote which
portion of the transaction is hashed and pre-signed whenever a SIGHASH flag different from SIGHASH ALL is used.

Algorithm 4 The DisproveScripti for each Tapleaf i P t1, . . . , ku. The algorithm takes as input the commit-
tee’s multisignature σC, the intermediate states zi´1, zi of the program f , along with the Lamport commit-
ments czi´1

, czi .

1: function DisproveScripti(σC, zi, zi´1, czi , czi´1
)

2: CheckCovenantpq;

3: CheckLampCommVerifypkzi´1
pzi´1, czi´1

q; Ź Both the public keys pkzi´1
and pkzi are

hard-coded in the script
4: CheckLampCommVerifypkzi

pzi, cziq;

5: if zi ‰ fipzi´1q _ pi “ k ^ zk R V q then Ź fi, V and k are hard-coded in the script

6: return True

7: else

8: return False

9: end if

10: end function

5.2 Cost-effective, Optimistic Function Verification

In the current design, both the Assert and Disprove transactions are significant in size, resulting in high
transaction fees when posted on-chain. We address this by extending the construction to an optimistic model,
significantly reducing the on-chain footprint under honest operation. Thereby, the operator at first commits
to the input x of the program f and must only reveal the output and intermediary states if challenged by
a challenger. To this end, we introduce additional transactions to the Commit and Challenge Period,
as well as the Payout phases. Setup and Execution remain unchanged. The improved construction is
illustrated in Fig. 3.

12

1. Setup. If using a committee to emulate covenants, the PayoutOptimistic transaction also needs to be
created and pre-signed by the signer committee. Otherwise, it remains unchanged.

2. Execution. Remains unchanged.
3. Commit and Challenge Period. When committing to the execution of program f , the operator first

posts a Claim transaction (specified in Eq. (4)), indicating that for some y “ zk in a predefined set V ,
they know some x “ z0 such that fpxq “ y. The operator can convince any potential challenger that
they know such an x either by posting it on-chain or by sending it to them via any other communication
channel, e.g., using a third party data availability layer.

Claim :“
´

input “ r˚s,

witness “ rpσO ^ ˚q, xs,

output “ rpdB, xRelTimelockp∆Bq ^ CheckCovenant,AssertScriptyq, p0B,CheckSigpkO qs

¯

,

(4)
Again, note that x can be omitted from the witness if shared off-chain, and the script AssertScript is
defined as

AssertScript :“ CheckCovenant ^ CheckLampCommpkz0
^ ¨ ¨ ¨ ^ CheckLampCommpkzk

;

During the following challenge period ∆B , anyone can dispute the claim by publishing a Challenge
transaction (specified in Eq. (6)), which forces the operator to respond by publishing the Assert trans-
action, which in turn can be disproved. The second output of the Claim transaction thereby acts as
a so-called connector output : it must remain be unspent for the operator use PayoutOptimistic to
withdraw funds from BitVM2 unchallenged.

4. (i) Payout. If the operator’s claim goes unchallenged, the operator can post the PayoutOptimistic
transaction (specified in Eq. (5)) after period ∆B to spend both outputs of the Claim transaction.
This way, the operator claims funds from BitVM2 and disables the dispute logic.

PayoutOptimistic :“
´

input “ rpClaim, 0, xRelTimelockp∆Bq ^ CheckCovenantyq,

pClaim, 1,CheckSigpkO qs,

witness “ rpCovenantq, pσOqs,

output “ rpdB,CheckSigpkO qs

¯

,

(5)

(ii) Challenge and Disprove. Any challenger can dispute the claim by publishing a Challenge trans-
action (specified in Eq. (6)), which spends the second (connector) output of the Claim transaction
and disables the PayoutOptimistic transaction, forcing the operator into the dispute. Now, the
operator only can access the BitVM2 funds dB through the Payout transaction, which in turn re-
quires the Assert transaction to be published. The Assert transaction can thereby be disproved in
case of a faulty claim, as discussed in Section 5.3.

Challenge :“
´

input “ rpClaim, 1,CheckSigpkO q, p˚qs,

witness “ rpσOq, p˚qs,

output “ rpcB,CheckSigpkO qs

¯

,

(6)

5.3 BitVM2: SNARG Verifier on Bitcoin

We can use this technique to encode a SNARG verifier (see Section 3.2) on Bitcoin, in particular, the
Groth16 [7] verifier (which even fulfills the stronger notion of a SNARK verifier). The goal is to execute

13

Assert
In Out

dB dB

Payout

dB

In Out

dB Operator

Disprove

aB

In Out

dB bB Burn

Claim

dB

In Out

dB

0B

Challenge

cB

In Out

0B

cBCrowdfunding

Operator

PayoutOptimistic

dB

In Out

dB Operator

0B

Operator

Operator

CheckCovenant^RelTimelock(∆B)

DisproveScripti

A
ss
er
tS
cr
ip
t commit

z0, . . . , zk

SIGHASH SINGLE

SIGHASH SINGLE|ANYONECANPAY

CheckCovenant^

Operator^

RelTimelock(∆A)

commit
zi´1, zi

Challenger

Fig. 3. Illustration of the optimistic function verifier.

transactions contingent on providing a valid SNARG proof. To achieve this, the Assert transaction is
created with f as the SNARG verifier. This verifier is split up into k chunks and set up as Tap leaves as
explained in Section 5. An operator can execute the Payout transaction only if they provide a correctly
verifying proof. Otherwise, anyone can post the Disprove transaction. An example implementation of a
Groth16 [7] verifier written in Bitcoin Script is provided in [26], showing that it is possible to verify SNARKs
(and thus also the weaker notion, SNARGs) on Bitcoin. An overview of the resulting BitVM2 protocol is
shown in Fig. 4.

5.4 Protecting against malicious challengers via collateral

Currently, any user can always challenge the operator, forcing them to reveal the Assert transaction, which
results in increased on-chain costs, even if the operator is honest. We disincentivize such griefing attacks
against the operator by requiring the challenger to put up some collateral cB. This collateral cB should be
parameterized such that it covers the transaction fees of Assert.

Crowdfunding Collateral for Challenges. While the collateral protects operators, it may deter chal-
lengers from triggering the challenge, should it be too expensive for individual users. We can mitigate
this by crowdfunding the challenge by setting the SIGHASH flag [22] of the Challenge transaction to
SIGHASH SINGLE|ANYONECANPAY. The operator can effectively pre-sign the first input and output, broadcast
this signature, and thus allow challengers to add more inputs. Consequently, instead of a single challenger
covering the upfront costs for Challenge, the collateral can be shared among users, amortizing costs. Each
participating challenger simply adds their input and sends the transaction along until enough inputs are
provided to cover cB.

6 BitVMBridge: A Trust-Minimized Bitcoin Bridge

One of the main practical use cases of BitVM2 is to enable trust-minimized bridges between Bitcoin (and
similar blockchains) and other blockchain networks, sidesystems, and in particular so-called Layer 2 networks.
In the following, we refer to such networks collectively as sidesystems. As outlined in Section 2, the goal of a
bridge is to create (“peg-in”) a “wrapped” representation12 of BTC on a sidesystem (Bs) that can later be
redeemed for BTC (B) at a 1:1 ratio (“peg-out”).

12 Also referred to as cryptocurrency-backed assets, see definition in [25].

14

Fig. 4. High-level overview of the BitVM2 protocol. A SNARG (or SNARK) verifier (in the generic case this is an
arbitrary program) is first implemented in Bitcoin Script, and then split into sub-programs f1, . . . , fk, such that each
could be executed in a Bitcoin block. When closing the BitVM2 instance, operators commit to the program result. If
challenged, the operator reveals the start, intermediary and end states z0, . . . zk. As a result, anyone can show that
z1
2 ‰ f2pz1q, disproving the faulty operator’s claim.

Cross-chain bridges, by design, require a trusted third party [24] and are inherently difficult to build,
which is why all Bitcoin bridges today rely on multisignature designs and honest majority assumptions.
In the following, we show how we can reduce the additional trust assumptions (on top of Bitcoin and
the sidesystem being secure) to the existence of one active rational operator and rational challengers, for
achieving balance security. We note that the following holds assuming a correct setup (CheckCovenant) as
described in Section 4.2, i.e., demands existential honesty in the signer committee used to emulate covenants.
In particular, we outline a so-called light client bridge protocol, delineated below and illustrated in Fig. 5.

1. PegIn. A user Alice (A) deposits vB on Bitcoin into a BitVM2 instance via a PegIn transaction (specified
in Eq. (7)). The single output of this transaction uses CheckCovenant as spending condition to enforce
that it can only be spent via a transaction that can be challenged by any challenger. The sidesystem
verifies that the PegIn transaction was included in the Bitcoin blockchain (via a Bitcoin light client
function) and mints v wrapped Bs to Alice’s account in the sidesystem. This sidesystem verification and
minting logic are enforced by the sidesystem’s consensus, e.g., as a smart contract13

PegIn :“
´

input “ rp˚,˚,CheckSigpkAqs,

witness “ rpσAqs,

output “ rpvB,CheckCovenantqs

¯

,

(7)

Alice can now freely use Bs on the sidesystem. To simulate a real-world setting, we assume Alice trans-
ferred her vBs to a user Bob (B), i.e., Bob has vBs in his sidesystem account.

2. PegOut. Bob wants to withdraw the vBs back to Bitcoin. For this, he burns the vBs using a Burn
transaction on the sidesystem, which makes the Bs unspendable.

13 See, e.g., [25] for a specification of such sidesystem mint and Bitcoin light client functionality.

15

Ideal functionality. In an ideal scenario, Bob should now be able to spend the vB previously locked by
Alice via the PegIn transaction using a transaction PegOutideal . This ideal peg-out transaction would
verify that the Burn transaction was correct and included in the sidesystem using a SidesytemLCScript
that implements a light client functionality for the sidesystem.

PegOutideal :“
´

input “ rpPegIn, 0,CheckCovenantq, p˚,˚,SideSystemLCScriptqs,

witness “ rpσCq, p˚qs,

output “ rpvB,CheckSigpkB qs

¯

,

(8)

As of this writing, this ideal functionality cannot be implemented natively in Bitcoin Script, inter alia
due to the fact that Bob – the user withdrawing from the bridge – is not known at the time of the peg-in,
making it impossible to enforceably link the PegIn transaction to PegOutideal .

6.1 Strawman Bridge Design

In this section, we outline a strawman design for a BitVM2 bridge that emulates the ideal functionality
of PegOutideal using the optimistic SNARG verifier. Here, we assume that the sidesystem operates as a
rollup, relying on Bitcoin for its consensus. In particular, the sidesystem uses data commitments posted to
the Bitcoin blockchain to determine the order of transactions, combined with a method for verifying state
transitions. This design simplifies verification by focusing only on validating transactions included in the
Bitcoin blockchain. Consequently, BitVM2 only needs to implement a Bitcoin light client rather than both a
sidesystem and a Bitcoin light client. We illustrate the strawman protocol in Fig. 5.

A fully operational bridge consists of multiple BitVM2 instances, each with a pre-defined amount of
vB deposited though PegIn transactions. By design, wrapped BTC Bs is fungible across different BitVM2
instances, i.e., it does not matter against which BitVM2 instance Bob is executing the PegOut (the selection
can be determined by the sidesystem).

Payout

vB

In Out

vB Operator

0B

PegIn

vBAlice

In Out

vB

PegOut

v ´ fOBBob

In Out

0B

v ´ fOBOperator

Bob

Sidesystem
Light
Client

Burn

vB

In Out

vB BurnBob

Sidesystem

verify

verify

CheckCovenant

Bitcoin
Light
Client

0B

SIGHASH SINGLE|ANYONECANPAY

Fig. 5. Illustration of the strawman bridge protocol in the generic case. In our bridge protocol, the sidesystem light
client collapses to the Bitcoin light client.

16

Initializing the SNARG. Recall from Section 3.2 that the SNARG is defined over a relation R (via
algorithm SNARG.Setup). In our case, we are interested in a relation R with pairs pϕ,wq, where the statements
ϕ consist of two block hashes, and the witness w consists of a blockchain. A statement ϕ is correct, i.e.,
pϕ,wq P R if there exists a blockchain w, such that:

1. The blockchain’s first and last block hashes are ϕ;
2. The blockchain is valid, i.e., each block references its parent and its hash is smaller than the inscribed

target;
3. The blockchain contains a PegOut transaction of the operator O, i.e., a transaction where O pays the

amount of the PegIn transaction to Bob (possibly referencing the hash of the PegIn transaction in an
OP RETURN output);

4. The blockchain contains an inscribed sidesystem state in one of its blocks, with the sidesystem containing
the Burn transaction of Bob.

More formally, let H : t0, 1u˚ Ñ t0, 1uλ be a hash function (modeled as a Random Oracle), let ϕ P t0, 1uλ ˆ

t0, 1uλ be two (block) hashes, let B P t0, 1ubl be a bl-length bit-string representing a block, that contains
the field B.parent P t0, 1uλ, let w P pt0, 1ublq˚ be a list of blocks (a blockchain). We define R :“ tpϕ,wq :
Πpϕ,wq “ Trueu, where Π is defined in Algorithm 5. Note that we abstract the extraction of the sidesystem’s
state with the function SidesystemStatepwq, which returns a state of the sidesystem, inscribed on the Bitcoin
blockchain w. The actual implementation depends on the sidesystem’s operation.

Algorithm 5 The chainstate proof Π, which defines the relation R over which we define our SNARGs.

1: function Π(ϕ, w)

2: for i P t0, . . . , lengthpwq ´ 2u do

3: if wri ` 1s.parent ‰ Hpwrisq then

4: return False

5: end if

6: end for

7: if ϕr0s ‰ Hpwr0sq _ ϕr1s ‰ Hpwr´1sq _ PegOut R w _ Burn R SidesystemStatepwq then

8: return False

9: end if

10: return True

11: end function

Emulating a Bitcoin Light Client via OP BLOCKHASH. A key component of the bridge is the ability to
introspect and verify the Bitcoin state within the BitVM2 instance. This verification is essential to confirm
that the PegOut transaction was executed correctly and aligns with theBurn transaction on the sidesystem.
Since Bitcoin currently lacks built-in support for this functionality, it necessitates the implementation of a
Bitcoin light client within BitVM2. We stress here that using connector outputs to ensure the atomicity of
these two steps, rather than relying on the light client, is not feasible. Specifically, adding a connector output
to the PegOut transaction and using it as input to the Payout transaction is not possible. This is because,
in a bridge setting, we do not know the identity of the withdrawing user (Bob) in advance and, therefore,
cannot determine the necessary transaction hash during setup.

For simplicity, we start with a strawman construction that makes use of a hypothetical Bitcoin Script
opcode OP BLOCKHASH and proceed to demonstrate a practical light client construction on Bitcoin without

17

additional opcodes in Section 6.2. We assume OP BLOCKHASH takes an element from the Bitcoin Script exe-
cution stack, interprets it as a number, and then fetches the block at that height and puts its hash on the
stack.

In this strawman scheme, the operator includes the height hend of a block that has occurred after the
PegOut transaction in the Assert transaction’s input along with commitments to z0, . . . , zk (thus, a slightly
modified version of Eq. (1)). Using OP BLOCKHASH, the hash of the block corresponding to hend , i.e., HpBendq,
is fetched. Then, it is checked that HpBendq is part of z0. This is to ensure correct parameterization of the
SNARG, such that we can verify that the block in which the PegOut was included is indeed part of the
Bitcoin blockchain. Recall that the commitment for z0 is verified in the AssertScript, and in DisproveScript1.
Thus, we use OP BLOCKHASH to ensure that the block hash HpBendq that is part of z0 and is fed as input
to SNARG.Vrfy is part of the Bitcoin blockchain. The Genesis block Bstart at height hstart :“ 0 (or some
other block in the Bitcoin blockchain agreed upon during the bridge setup) can be hard-coded during the
setup. Then we have ϕ “ pHpBstartq,HpBendqq. Note that the SNARG will only return True, if the provided
statement ϕ is correct. Thus, if the result zk is True, this means that the Burn and PegOut transactions
have indeed happened.

Strawman Protocol. We proceed to describe the phases of the strawman bridge protocol. Thereby, we
emulate the ideal functionality of PegOutideal using BitVM2 and employ operators and challengers to en-
sure the peg-out is processed correctly. The protocol is outlined below while the transactions with their
dependencies are visualized in Figure 6.

1. Setup (Peg-In). Following the BitVM2 design, SNARG.Vrfy represents the program f that is split into
sub-programs. Recall that SNARG.Vrfy takes as input pR, crs, ϕ, πq. As the relation R and the common
reference string crs are known at setup time, they can be hard-coded, leaving our function with input of
the form z0 “ pϕ, πq, consisting of a statement ϕ and a SNARG proof π. Otherwise, the setup remains
unchanged to that of a standard BitVM2 instance as per Section 5.2. A user Alice (A) deposits vB via
the PegIn transaction as per Eq. (7).

2. Execution (Peg-out). First, Bob publishes the Burn transaction on the sidesystem. Next, Bob creates
an incomplete PegOut Bitcoin transaction (specified in Eq. (9)), with a zero-value input from Bob and
one output allocating v ´ fOB to himself, where fO is a pre-agreed fee charged by the operator for
processing withdrawals. Bob thereby sets the SIGHASH SINGLE|ANYONECANPAY flag for the transaction,
which allows another user to complete the transaction by providing the outstanding vB as input.
At this stage, the operators come into play: One of the m operators effectively fronts the vB from their
own funds. As a result, all of the operators compete to publish the PegOut transaction in order to
claim the associated fees, but only one of the transactions will be accepted into the Bitcoin blockchain.
The operator who successfully facilitates the peg-out then reclaims the fronted vB from BitVM2 by
spending the output of PegIn transaction. Since the set of m operators is pre-defined for each BitVM2
instance, we can enforce the reclaiming process via the CheckCovenant. In the absence of the necessary
Bitcoin opcodes, the CheckCovenant is emulated through a committee n-of-n multisig (cf. Section 4.2)
that pre-signs the transactions during the Setup phase.

PegOut :“
´

input “ rp˚,˚,CheckSigpkB q, p˚,˚,CheckSigpkO qs,

witness “ rpσBq, pσOqs,

output “ rpv ´ fOB,CheckSigpkO qs

¯

,

(9)

The operator proceeds to publish the PegOut transaction to the Bitcoin blockchain, completing the
withdrawal for Bob.

3. Commitment and Challenge Period. Next, the operator initiates a claim to recover the pre-funded
amount of vB from BitVM2 (the PegIn output). This is done by publishing the Claim transaction
(introduced earlier in Eq. 4). Before the operator can spend these funds, we must verify that the op-
erator correctly processed the peg-out for Bob, i.e., the PegOut transaction that corresponds to the

18

Burn transaction on the sidesystem was included in the Bitcoin blockchain. All challengers (including
other operators) perform this verification on their local machines and, in case of a dispute, publish the
Challenge transaction within timeout ∆B . This ensures that (i) the peg-out only happens when the
Burn transaction has happened on the sidesystem, and (ii) prevents an operator from stealing the B
locked in the bridge.

4. Payout or Disprove. After the challenge period has elapsed, the operator finalizes the withdrawal by
publishing PayoutOptimistic. Disputes are handled the same way as with any other BitVM2 program:
a challenger publishes the Challenge transaction, the operator must respond by publishing the Assert
whereupon the challenger can use the Disprove transaction to slash the operator (or an honest operator
can use Payout to claim vB after timeout ∆A).

Assert
In Out

dB dB
hend , commit

Payout

vB

In Out

vB Operator

Disprove

aB

In Out

dB bB Burn

z0, . . . , zk

Claim

dB

In Out

dB

PayoutOptimistic

vB

In Out

vB Operator

dB

Operator

PegIn

vBAlice

In Out

CheckCovenant
vB

PegOut

v ´ fOBBob

In Out

0B

v ´ fOBOperator

Bob

0B

dB

0B

Challenge

cB

In Out

0B

cBCrowd-
funding

Operator

Operator

Operator

CheckCovenant^RelTimelock(∆B)

CheckCovenant^

Operator^

RelTimelock(∆A)

DisproveScripti

SIGHASH SINGLE

commit
zi´1, zi

A
ss
er
tS
cr
ip
t^

O
P
B
L
O
C
K
H
A
S
H

p
h
e
n
d

q
“

H
p
B

e
n
d

q

SIGHASH SINGLE|ANYONECANPAY

SIGHASH SINGLE|ANYONECANPAY

Challenger

Fig. 6. Implementing transaction verification with a hypothetical opcode OP BLOCKHASH. The input z0 :“ pϕ, πq

consists of the statement and the snarg proof. The former ϕ “ pHpBstartq,HpBendqq consists of two block hashes. In the
Assert transaction, the operator additionally commits to a height hend , and it is checked that OP BLOCKHASHphendq “

HpBendq.

6.2 BitVMBridge: Bitcoin-compatible Bridge Protocol

In this section we show how to implement a Bitcoin light client using the BitVM2 optimistic SNARG verifier.
Combining such a light client with the strawman bridge design that we described in Section 6.1, allows us
to create the first practical, trust-minimized bridge that is compatible with today’s Bitcoin.

To secure our bridge design, it is essential to revisit the necessary Bitcoin light client functionality. We
need to verify two key points: (i) that the Burn transaction was correctly included in the sidesystem, and
(ii) that the corresponding PegOut transaction was included in the Bitcoin blockchain before the operator
O requests a refund through the Claim transaction. This ensures that the amount of burned vBs by Bob
matches the vB sent to Bob by the operator O on Bitcoin (minus fees fO).

The main challenge for our light client is verifying that block Bend , whose hash is part of the witness
w passed to the SNARG verifier, is part of the same blockchain as the Assert transaction. In other words,
we need to emulate our hypothetical opcode OP BLOCKHASH. Note that the SNARG verifier can check that
a given chain is valid and that the transaction of interest is part of it, but it cannot perform blockchain
introspection. As a result, a malicious operator could attempt to mine a private Bitcoin fork that contains
the PegOut transaction, thus generating a valid SNARG proof. This proof could then be used to take the
money via a Assert and Payout transaction, while not posting PegOut on the main chain.

19

PowPV: Light Client using Superblocks. We propose a practical light client model, taking advantage
of so-called superblocks [11], i.e., Bitcoin blocks that exceed the minimum required difficulty target.

Superblocks. Recall that in Bitcoin, a valid block must exceed a certain difficulty target during each difficulty
epoch of 2016 blocks (approximately 2 weeks). The more leading zeroes a block’s hash has, the heavier the
block is in terms of Proof-of-Work difficulty. As a result, we can order Bitcoin blocks by their block hash.
Furthermore, for a given time period, ∆C , there will be exactly one block, the heaviest block, that has the
smallest block hash (except with negligible probability, assuming a collision-resistant hash function). The
probability of a Bitcoin miner (consensus participant) finding this block is equal to their relative mining
power (to the rest of the network).

Replacing OP BLOCKHASH. Without an OP BLOCKHASH opcode, we need to ensure that the blocks, whose
hashes HpBstartq and HpBendq provided as input ϕ to the SNARG.Vrfy function, are on the same chain as
the Assert transaction in which the operator commits to ϕ. It is sufficient to show that Bend is on the
longest chain. This ensures the SNARG.Vrfy function outputs False if the correct PegOut was not included
in the main chain, allowing challengers to easily invalidate private fork submissions. Since start block Bstart

is hard coded during BitVM2 setup, e.g. as the Genesis block, and is certainly on the main chain, we focus
our attention on hend provided by the operator during runtime in the Assert transaction.

We solve this by ensuring that Bend is a block that was mined after the operator initiates the process to
reclaim funds from BitVM2. The selection of the block must be deterministic but also such that the operator
cannot easily predict or manipulate it. This is where we make use of the aforementioned superbloks.

Light Client Protocol. We slightly modify our SNARG setup with the modified relation R1 :“ tpϕ,wq :
Π 1pϕ,wq “ True} which is defined over Π 1, see Algorithm 6, which is slightly modified from Π Algorithm 5.
For example, it takes as input a statement ϕ :“ pHpBstartq,HpBendq, TS , SBOq, consisting of two Block
hashes, a start time TS (as block height) and a superblock SBO. The witness w remains the same. Similar to
before, the function input is z0 :“ pϕ, πq, where π is a SNARG proof π. We then insert the logic enumerated
below at the start of the Commit and Challenge Period phase of the BitVMBridge protocol. When
emulating covenants with a committee, all transactions that spend outputs containing the CheckCovenant
condition must be pre-signed during the Setup phase. The rest of the strawman bridge protocol remains
the same. We illustrate the resulting full BitVMBridge protocol in Fig. 7.

1. The operator initiates the reclaim process by publishing a new KickOff transaction (cf. Eq. 10) on
Bitcoin.

KickOff :“
´

input “ r˚s,

witness “ rpσO ^ ˚qs,

output “ r

pdB, xpRelTimelockp∆Cq ^ CheckCovenant ^ CheckLampCommSBO
q,

pRelTimelockp∆Lq ^ CheckCovenantq,

pRelTimelockp∆C ` ∆Lq ^ CheckCovenantqyq,

p0B, xpRelTimelockp∆Lq ^ CheckCovenantq,

pCheckSigpkO ^ CheckLampCommpkTS

^ AbsTimelockpTSqqyq

s

¯

,

(10)

2. Immediately, the operator must publish the StartTime transaction, committing to the current time TS .

20

StartTime :“
´

input “ rpKickOff , 1, xpCheckSigpkO ^ CheckLampCommpkTS

^ AbsTimelockpTSqqyqs,

witness “ rpσO, TS , cTS
qs,

output “ rp0B,Falseqs

¯

,

(11)
This time TS marks the start of a superblock measurement period that lasts for the period ∆C (e.g. 2000
blocks), during which the operator must observe all blocks on the main chain and identify the heaviest
superblock SB .

3. The two connector outputs of the KickOff transaction can be spent in three ways.

3.a After ∆L if the operator has not published the StartTime transaction. A challenger then spends
both outputs via the TimeTimeout transaction (cf. Eq 12). This invalidates the Claim transaction
and ensures the operator cannot pre-mine a private chain ahead of the measurement.

TimeTimeout :“
´

input “ rpKickOff , 0, xRelTimelockp∆Lq ^ CheckCovenantyq,

pKickOff , 1, xRelTimelockp∆Lq ^ CheckCovenantyqs,

witness “ rpCovenantq, pCovenantqs,

output “ rpbB,Falseq, paB,Trueqs

¯

,

(12)

3.b After ∆C but before ∆C `∆L has passed. Assuming the operator correctly published the StartTime
transaction, they now publish the ClaimLC transaction (cf. Eq. 13, a modified version of Claim),
where they commit to what they believe to be the heaviest superblock SBO .

ClaimLC :“
´

input “ rpKickOff , 0, xRelTimelockp∆Cq ^ CheckCovenant ^ CheckLampCommSBO
yqs,

witness “ rpCovenant, SBO, cSBO
qs,

output “ rpdB, xRelTimelockp∆Bq ^ CheckCovenant,AssertScript,

CheckLampCommpkSBO

^ CheckLampCommpkTS

^ SBO.weight ă SBV .weight^

SBV .time ą TS _ SBV .time ă TS ` ∆Cqyq, p0B,CheckSigpkO qs

¯

,

(13)
3.c After ∆C `∆L if the operator has not published the ClaimLC transaction. A challenger then spends

the first output via the ClaimTimeout transaction (cf. Eq. 14). This invalidates the ClaimLC
transaction and ensures that a malicious operator has at most the same amount of time ∆C (plus
liveness parameter ∆L

14) as the honest miners to attempt mining a private fork.

ClaimTimeout :“
´

input “ rpKickOff , 0, xRelTimelockp∆C ` ∆Lq ^ CheckCovenantyqs,

witness “ rpCovenantqs,

output “ rpbB,Falseq, paB,Trueqs

¯

,

(14)

4. Once the ClaimLC transaction has been included in the Bitcoin blockchain, the challengers review the
superblock SBO and compare it against their observed heaviest superblock SBV . Any challenger can then
dispute the operator’s claim using the DisputeChain transaction if SBO ‰ SBV and SBO .weight ă

14 Recall that ∆L is the liveness parameter, i.e., the upper bound on the time it takes an honest actor to include a
transaction in the underlying blockchain. This delay ensures that an honest operator has sufficient time to include
the ClaimLC transaction in a block after the superblock measurement period ∆C has passed.

21

SBV .weight , i.e., the operator committed to a different block with a lower weight than the heaviest su-
perblock on the Bitcoin main chain mined during period ∆C . To protect honest operators from malicious
challengers attempting incorrect disputes, a challenger can only publish the DisputeChain transaction
if they provide a block SBV that was mined between TS and after TS ` ∆C .

DisproveChain :“
´

input “ rpClaim, 0, xCheckLampCommpkSBO

^ CheckLampCommpkTS

^

SBO.weight ă SBV .weight ^ SBV .time ą TS _ SBV .time ă TS ` ∆Cqyqs,

witness “ rpCovenant, SBV , SBO, cSBO
, TS , cTS

qs,

output “ rpbB,Falseq, paB,Trueqs

¯

,

(15)
5. If the challengers do not dispute the superblock commitment, we proceed down the usual protocol

path, i.e., challengers can challenge the bridge execution by publishing the Challenge transaction or
the operator finalizes claiming funds from BitVM2 after ∆B using transaction PayoutOptimistic. We
note that the input z0 :“ pϕ, πq to the SNARG verifier consists of the statement and proof, where
ϕ :“ pHpBstartq,HpBendq, TS , SBOq contains TS and SBO. The operator commits to z1

0 in the Assert
transaction, which is the same as z0, but missing TS and SBO. DisproveScript1 is slightly modified: It
checks the Lamport commitments for the public keys for z1

0, SB, and TS . Then, z0 is reconstructed from
z1
0, SB and TS , before executing f1pz0q.

To attack this light client protocol, a malicious operator would have to mine a longer chain than the main
Bitcoin blockchain during the period ∆C ` ∆L and find the heaviest superblock. The probability of success
scales with the hashrate of the operator. The longer the measurement period∆C , the more precise the success
probability is due to reduction in variance. The intuition is that this offers sufficient economic security to
discourage an attacker as they would have to waste of lot of hashrate on a fork that is not part of the main
chain thereby forgoing their block rewards.

Dealing with Bitcoin Difficulty Adjustments For simplicity, our PowPV light client design currently
assumes a constant Bitcoin difficulty target T . We note that Π 1 can easily be modified to encode the
complex difficulty readjustment for the blockchain w. The crucial part for security is the difficulty of blocks
with heights between TS and TS ` ∆C . First of all, it is advisable for operators that TS is chosen such that
there is no difficulty change between TS and TS `∆C . Secondly, we cannot know the difficulty in the period
between TS and TS `∆C upfront, as during setup time we only know the difficulty target at that time Tsetup .

To deal with this, we can hard-code Tsetup (perhaps scaled by some constant in Rě0) in Π 1 for the blocks
with heights between TS and TS ` ∆C . Choosing it higher or lower is always a trade-off between safety (a
lower difficulty makes it easier for operators to fake a proof) and liveness (a difficulty higher than the actual
difficulty makes it impossible for operators to complete the withdrawal until the difficulty is high enough
again). We are working on a more extensive version of this paper, where we propose (i) a way of estimating
a future difficulty based on historic difficulty changes and the time difference between the time of the setup
and TS , and (ii) a way of reading the difficulty from the suberblock SB.

7 Analysis

Note that this is a work in progress, and by no means a formal analysis. Instead, for this draft we content
ourselves with outlining the type of analysis and proof strategy we are currently working on for a more
extensive version of this paper.

Under our threat model, there are two main cases where either the operator or the challenger may deviate
from the protocol specification. Our analysis will mainly focus on the case where operators and challengers
have access to computational power, i.e., they are either miners or collude with miners, as proving security

22

Assert
In Out

dB dB
commit

Payout

vB

In Out

vB Operator

Disprove

aB

In Out

dB bB Burn

z
1
0, . . . , zk

ClaimLC

dB

In Out

dB

DisproveChain

aB

In Out

dB

CheckCovenant^check
commitment for SBO, TS^

SBV .weightąSBO.weight
^SBV .timeąTS

^SBV .timeăTS ` ∆C

PayoutOptimistic

vB

In Out

vB Operator

dB

Operator

PegIn

vBAlice

In Out

CheckCovenant
vB

PegOut

v ´ fOBBob

In Out

0B

v ´ fOBOperator

Bob

0B

dB

Operator dB

KickOff

0B

In Out

dB

0B

Challenge

cB

In Out

0B

cBCrowd-
funding

commit

SBO

StartTime

In Out

0B

TimeTimeout

aB

In Out

dB

0B

ClaimTimeout

aB

In Out

dB

Operator^check
commitment for TS^

AbsTimelock(TS)

SBV ,

bB

bB

bB

CheckCovenant^

RelTimelock(∆L)

Operator

Operator

Burn

Burn

CheckCovenant^check
commitment for SBO

RelTimelock(∆C)

CheckCovenant^

RelTimelock(∆L)
Burn

CheckCovenant^RelTimelock(∆B)

CheckCovenant^

Operator^

RelTimelock(∆A)

DisproveScripti

SIGHASH SINGLE

commit
zi´1, zi

commit
TS

CheckCovenant^

RelTimelock
(∆C ` ∆L)

A
ss
er
tS
cr
ip
t^

ch
e
ck

c
o
m
m
it
m
e
n
tf
o
r
S
B

O
,
T
S

SIGHASH SINGLE

SIGHASH SINGLE

SIGHASH SINGLE

SIGHASH SINGLE|ANYONECANPAY

SIGHASH SINGLE|ANYONECANPAY

0B Burn

commit
SBO, TS

Challenger

Challenger

Challenger

Challenger

Fig. 7. Transactions of the BitVMBridge protocol. The transactions ClaimLC, PayoutOptimistic, Assert,
Challenge, Payout, and Disprove are essentially the same as Fig. 3. Together with the KickOff , StartTime,
TimeTimeout, ClaimTimeout, and DisproveChain, they make up the PowPV light client, i.e., the com-
ponent shown as a black-box in Fig. 5. The input z0 :“ pϕ, πq consists of the statement and proof, where
ϕ :“ pHpBstartq,HpBendq, TS , SBOq contains TS and SBO. z

1
0, which the operator commits to in the Assert trans-

action, is the same as z0, but missing TS and SBO. DisproveScript1 is slightly modified: It checks the Lamport
commitments for the public keys for z1

0, SB, and TS . Then, z0 is reconstructed from z1
0, SB and TS , before executing

f1pz0q.

when either has mining power is straightforward. We can disregard the attack where a malicious user, Bob
(colluding with an operator), tries to withdraw the coins of a BitVM2 instance via a Payout transaction
without posting the proper Burn transaction on the sidesystem. This is because we assume that the state
of the sidesystem is inscribed in the Bitcoin blockchain and, as such, would result in a failed execution of
the SNARG.Vrfy function, which in turn will lead to a challenge.

Deviating operator. An operator can try and steal the money v if they manage to publish either the Payout
or PayoutOptimistic transaction without posting the PegOut transaction (which would give the money to
Bob). We argue here that a rational challenger would prevent an operator from posting PayoutOptimistic
by posting theChallenge transaction. Parties that are interested in this are Bob (who loses money otherwise)
and other users who have staked money in the bridge. This leaves the operator trying to publish Payout,
which is only possible if no challenger posts a Disprove transaction, i.e., the operator is able to post the
Assert transaction without being challenged, even though they did not post the PegOut transaction.

Without having OP BLOCKHASH at our disposal, the light client we introduced in Section 6.2 brings some
risk. Specifically, the operator has to (i) find the heaviest block SBO in the period between TS and TS `∆C ,
and (ii) mine as many blocks of sufficient difficulty as fall in the same period. In the full version, we will

23

Algorithm 6 The modified chainstate proof Π 1 extending Π (cf. Algorithm 5), which defines the re-
lation R1 over which we define the SNARGs used in our PowPV construction. Here, the statement
ϕ :“ pHpBstartq,HpBendq, TS , SBOq consists of two Block hashes, a start time TS (as block height) and
a superblock SBO. Here, T P t0, 1uλ denotes the difficulty target of blocks. For simplicity, here, it is modeled
as static. We discuss dynamic difficulty in Section 6.2.

1: function Π’(ϕ, w)

2: pHpBstartq,HpBendq, TS , SBOq :“ ϕ

3: for i P t0, . . . , lengthpwq ´ 1u do

4: if Hpwrisq ą T then

5: return False

6: end if

7: end for

8: if lengthpwq ă TS ` ∆C _ SBO R w _ PegOut R wr: TSs _ Burn R SidesystemStatepwr: TSsq _

SBO.height ă TS _ SBO.height ą TS ` ∆C then

9: return False

10: end if

11: return ΠppHpBstartq,HpBendqq, wq

12: end function

quantify this risk and further provide an economic analysis, i.e., determine how much money an attacker
would need to spend to carry out such an attack and compare it to how much would they earn. We will
conclude our analysis by showing that a rational operator will correctly follow the protocol specification.

Deviating challenger. In principle, a challenger can grief an honest operator, i.e., burn most of the operator’s
deposit d and get a small fee a themselves, by posting a DisproveChain transaction, even though the
operator has posted the PegOut transaction. In that case, the operator would lose additionally v ´ fo coins
from the PegOut transaction. In order to pull this off, the challenger would need to generate a fake heaviest
block in the period TS and TS ` ∆C , which is heavier than the heaviest block that was honestly mined in
that time. Again, we will quantify this risk and analyze how much money an attack would need to spend
to carry out this attack. Here, note that the attacker can only get a very small amount a, which makes this
attack mostly a griefing attack. We will conclude our analysis by showing that any rational challenger will
thus follow the protocol correctly.

8 Limitations and Extensions

In this section, we discuss the practical limitations of our work, alternative approaches of specific design
components such as the Bitcoin light client, as well as possible extensions.

8.1 Practical Limitations

BitVM2makes use of several tricks and workarounds to enable optimistic verification with the existing Bitcoin
Script functionality, i.e., without requiring a fork.

– Covenant emulation via a Signer committee. One of the limitations of BitVM2 stems from the need
to emulate covenants using a signer committee as described in Section 4.2. Since we only use m-of-m

24

multisignatures, i.e., without threshold signing, the signer set can be scaled far beyond the “vanilla”
Bitcoin multisignature to 100+ signers using protocols like MuSig [15,17,18] – at the cost of increased
off-chain communication and coordination effort. While the implementation of this setup is beyond the
scope of this paper, we note that such setups have been successfully executed at a much larger scale, for
example, Ethereum’s KZG trusted setup ceremony15 which involved over 140,000 participants, executed
via a simple website.

– Large, non-standard transactions. As of this writing, the Assert and Disprove transactions in the
BitVM2 implementation exceed the 400kB “standardness” rule, i.e., these transactions will not be relayed
by non-modified Bitcoin full nodes. As a result, we cannot use the Bitcoin P2P network to deliver these
transactions to miners and must establish other communication channels, ideally as direct as possible to
enable timely inclusion in the Bitcoin blockchain. Currently, some mining pools offer public services to
include valid but non-standard transactions.16 We discuss how we could reduce the transaction sizes in
Section 8.4.

– Fixed deposit amounts. By design, BitVM2 only supports fixed deposit amounts. This limits the
flexibility of BitVMBridge as users must collect the exact amount of wrapped BTC on the sidesystem to
initiate a peg-out. A simple mitigation is to spread the bridge deposits across multiple BitVM2 instances
of different sizes, ranging from, e.g., 0.5 BTC to 100 BTC. In practice, however, we expect that peg-in
and peg-out transactions will be performed by professional users as a service, as discussed in Section 8.5.

– Operators must front BTC during peg-out. By design, operators must front the BTC to the
withdrawing user from their own balance. The benefit of this design is that users do not have to wait for
the challenge period(s) to pass and receive their BTC right away. The drawback is that this introduces
a capital cost for operators considering they must maintain or be able to source sufficient BTC on
Bitcoin to perform peg-outs in a timely manner. This cost must be accounted for in the operator fee fO,
or additional incentives paid by the sidesystem, such as sharing sidesystem transaction fees revenues.
Future additions to Bitcoin’s consensus could allow for a design in which the identity of the spender of
the PegOut transaction does not need to be determined at the time of setup.

– Economic light client security. Finally, as discussed in Section 7, the PowPV light client design offers
economic security but can still be attacked by non-rational adversaries with sufficient hashrate to inflict
damage on the bridge.

– Sidesystem light client complexity. In this paper, we assumed that the sidesystem is a Bitcoin
roll-up, i.e., uses the Bitcoin blockchain as its consensus by posting data commitments and verifying
state transitions. BitVM2 can theoretically be used to bridge BTC to blockchains with consensus proto-
cols completely independent from Bitcoin. The implementation complexity, thereby, is specific to each
blockchain protocol. Bitcoin-related consensus protocols, such as merged mining or Stakechains [13], are
likely easier to verify than completely independent Proof-of-Stake networks like Ethereum.

8.2 Using Winternitz instead of Lamport Signatures

Winternitz signatures [2] can replace Lamport signatures, which reduces the size of data commitments by
about 50%.

8.3 Other Bitcoin Light Clients Approaches

A Light Client using Regular On-chain Commitments. The straightforward approach to implement-
ing a secure light client functionality would involve requiring operators to regularly commit to the latest
Bitcoin block they are aware of, using Lamport signatures that enable challenges from a challenger. How-
ever, this method is impractical due to the substantial communication overhead and the associated on-chain
costs.

15 https://github.com/ethereum/kzg-ceremony?tab=readme-ov-file
16 See e.g. https://slipstream.mara.com/.

25

https://github.com/ethereum/kzg-ceremony?tab=readme-ov-file
https://slipstream.mara.com/

Using Optimistic On-chain Commitments. A slight improvement over the design of the previous
paragraph is making the commitments optimistic: the operators do not have to commit to the latest Bitcoin
block on-chain but rather share this data with challengers via some off-chain bulletin board (which could
also be another public blockchain where data storage is cheap). Challengers can challenge the operator in
case of missing data or a dispute, requiring an on-chain commitment, which in turn can be challenged, using
a similar protocol as shown in Section 5.2.

However, in the worst-case scenario, a malicious challenger can force operators to commit all data on-chain
if they decide to issue continuous challenges. While a possible mitigation could be to require the challengers
to cover or split the operator’s on-chain costs, the additional capital requirements imposed on the challengers
render this scheme impractical.

8.4 Balancing Assert and Disprove Transaction Sizes

So far, we assumed that there is only a single Assert transaction in which the operator must commit to the
intermediary states of the program execution. Given the Bitcoin block size limit, we estimate that we can
split a program into maximum 960 sub-programs of 4MB each17 using a single 4MB Assert transaction. In
theory, it is possible to utilize n multiple Assert transactions in parallel which would allow us to either (i)
reduce the size of each Assert transaction, or (ii) keep the Assert transaction sizes at 4MB but reduce the
size of the sub-programs and hence the size of the Disprove transaction. Thereby, in the Claim transaction
the operator must commit to the state of the computation at the end each of the n sub-program groups as
split across Assert transactions. A notable drawback of this approach is that the required number of pre-
signed transactions (when emulating covenants via a signer committee) increases exponentially. Specifically
we would have to pre-sign 2n Payout transaction to ensure an honest operator that was challenged by a
malicious challenger can recover funds, no matter which of the n Assert transactions they had to reveal.

8.5 Fast and Flexible Bridging via Atomic Swaps

Considering the fixed deposit sizes, as well as the need to run additional software to initiate a BitVM2 deposit,
we expect that peg-ins and peg-outs in BitVMBridge will be performed by professional users as a service,
potentially by operators themselves acting as market makers. In turn, we anticipate that the majority of
users enter and exit the sidesystem using cross-chain swaps such as [9]. Specifically, in our BitVMBridge
protocol, Alice would not only peg-in but also handle the peg-outs. To this end, Alice maintains balances in
both B on Bitcoin and Bs on the sidesystem, offering Bob to swap in and out against a fee, and re-balancing
as needed by performing peg-in and peg-out operations. We observe that this model has been implemented
at scale on Ethereum and Ethereum L2s via the so-called “liquidity bridges”18.

8.6 Rotating Operators

In our design we assume that each BitVM2 instance has a pre-defined operator set. While it is possible to add
and remove operators during runtime, the implementation of a such mechanism depends on the Covenant
model. In our case, where we emulate covenants via a signer committee, the m signers cannot add or remove
operators later on, as this would contradict our protocol and model that assumes at least one honest signer
that deletes their key. Even if such modifications were possible, for example, by employing key-evolving
cryptography, our signer set is designed to be large for safety reasons. As a result, the coordination overhead
may be significant and the failure rate (e.g. a signer being offline) high, possibly making ad-hoc operator
rotation impractical for an existing BitVM2 instance. Instead, we can introduce a pre-defined, periodic
rotation schedule embedded in the BitVM2 ruleset, i.e., the SNARG verifier. Under this model, as long as
there exists one honest operator per BitVM2 instance, we could rotate operators for existing instances by

17 https://bitvm.org/snark
18 See for example https://uniswap.org/whitepaper-uniswapx.pdf and https://docs.across.to/introduction/

what-is-across.

26

https://bitvm.org/snark
https://uniswap.org/whitepaper-uniswapx.pdf
https://docs.across.to/introduction/what-is-across
https://docs.across.to/introduction/what-is-across

executing a peg-out transaction that at the same time acts as a peg-in transaction for a new BitVM2 instance
with a different operator set. A similar rotation design is implemented by tBTCv219.

The design of mechanisms for selecting operators for a BitVM2 instance is outside the scope of this paper.
A design implemented across Proof-of-Stake systems, for example, is random sampling based staked tokens,
e.g. BTC [13] [3]. Similarly, one could sample operators based on Proof-of-Work performed over a certain
period, e.g. in sidesystems merge-mined with Bitcoin.

8.7 Consensus Changes Enhancing BitVM2

A range of proposed consensus changes would enable improved bridge designs. Most notably, big integer
arithmetic and covenants.

Having big integer arithmetic, as proposed by the Great Script Restoration[20], would substantially reduce
the SNARK verifier’s script size from gigabytes down to megabytes, which could potentially allow for SNARK
verification in a single transaction, drastically simplifying the overall design.
Any covenants proposal that allows to commit to transaction inputs would remove the need for the signer
committee and guarantee unconditional safety of deposits. Potential proposals include introspection opcodes
(OP INSPECTINPUTOUTPOINT), TXHASH, or OP CAT. Introspection opcodes are the most efficient approach in
terms of transaction fees.
Additionally, with OP CAT, the SNARK verifier could be replaced with a STARK verifier, avoiding the need
for a trusted setup [1] for the proof system. Furthermore, the Assert and Disprove transactions could be
reduced in size improving on-chain costs. Finally, OP CAT would make the emulation of OP BLOCKHASH simpler
and more robust, however ideally, it would be natively supported.

References

1. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and post-quantum
secure computational integrity. Cryptology ePrint Archive, 2018.

2. Dan Boneh and Victor Shoup. A graduate course in applied cryptography. Draft 0.6, 2023.
3. Xinshu Dong, Orfeas Stefanos Thyfronitis Litos, Ertem Nusret Tas, David Tse, Robin Linus Woll, Lei Yang, and

Mingchao Yu. Remote staking with economic safety. arXiv preprint arXiv:2408.01896, 2024.
4. Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and applications.

In Advances in Cryptology-EUROCRYPT 2015, pages 281–310. Springer, 2015.
5. Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable assumptions.

In Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, STOC ’11, page 99–108,
New York, NY, USA, 2011. Association for Computing Machinery.

6. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against adaptive chosen-
message attacks. SIAM Journal on Computing, 17(2):281–28, 04 1988. Copyright - Copyright] © 1988 Society
for Industrial and Applied Mathematics; Last updated - 2023-12-04.

7. Jens Groth. On the size of pairing-based non-interactive arguments. In Advances in Cryptology–EUROCRYPT,
pages 305–326. Springer, 2016.

8. David Harding and Mike Schmidt. Bitcoin optech: Covenants, 2024.
9. Maurice Herlihy. Atomic cross-chain swaps. arXiv:1801.09515, 2018. Accessed:2018-01-31.

10. Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S MatthewWeinberg, and EdwardW Felten. Arbitrum: Scalable,
private smart contracts. In 27th USENIX Security Symposium (USENIX Security 18), pages 1353–1370, 2018.

11. Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-interactive proofs of proof-of-work. In Financial
Cryptography and Data Security, pages 505–522. Springer International Publishing, 2020.

12. Leslie Lamport. Constructing digital signatures from a one way function. Technical Report CSL-98, October
1979.

13. Robin Linus. Stakechain: A bitcoin-backed proof-of-stake. In International Conference on Financial Cryptography
and Data Security, pages 3–14. Springer, 2022.

14. Robin Linus. BitVM: Compute anything on bitcoin, dec 2023. https://bitvm.org/bitvm.pdf.

19 https://github.com/keep-network/tbtc-v2/tree/main/docs

27

https://bitvm.org/bitvm.pdf
https://github.com/keep-network/tbtc-v2/tree/main/docs

15. Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple schnorr multi-signatures with
applications to bitcoin. Designs, Codes and Cryptography, 87(9):2139–2164, 2019.

16. Malte Möser, Ittay Eyal, and Emin Gün Sirer. Bitcoin covenants. In FC ’16: Proceedings of the the 20th
International Conference on Financial Cryptography, February 2016.

17. Jonas Nick, Tim Ruffing, and Yannick Seurin. Musig2: Simple two-round schnorr multi-signatures. In Annual
International Cryptology Conference, pages 189–221. Springer, 2021.

18. Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille. Musig-dn: Schnorr multi-signatures with verifiably
deterministic nonces. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 1717–1731, 2020.

19. Russell O’Connor and Marta Piekarska. Enhancing bitcoin transactions with covenants. In Michael Brenner,
Kurt Rohloff, Joseph Bonneau, Andrew Miller, Peter Y.A. Ryan, Vanessa Teague, Andrea Bracciali, Massimiliano
Sala, Federico Pintore, and Markus Jakobsson, editors, Financial Cryptography and Data Security, pages 191–198,
Cham, 2017. Springer International Publishing.

20. Rusty Russell. The great script restoration, jan 2024. https://github.com/bitcoin/bips/blob/

c2f268e83031b9b67e798c5c72a1171bfc463d1f/bip-unknown-var-budget-script.mediawiki.
21. Jason Teutsch and Christian Reitwießner. A scalable verification solution for blockchains. In Aspects of Compu-

tation and Automata Theory with Applications, pages 377–424. World Scientific, 2024.
22. Bitcoin Wiki. Contract: Sighash flags, sep 2023.
23. Pieter Wuille, Jonas Nick, and Anthony Towns. Bip 0341, taproot: Segwit version 1 spending rules, jan 2020.
24. Alexei Zamyatin, Mustafa Al-Bassam, Dionysis Zindros, Eleftherios Kokoris-Kogias, Pedro Moreno-Sanchez,

Aggelos Kiayias, and William J Knottenbelt. Sok: Communication across distributed ledgers, 2019.
25. Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayiotis Panayiotou, Arthur Gervais, and William J. Knotten-

belt. Xclaim: Trustless, interoperable cryptocurrency-backed assets. Cryptology ePrint Archive, Report 2018/643,
2018. https://eprint.iacr.org/2018/643.

26. ZeroSync. BitVM Github repository, dec 2023. https://github.com/BitVM/BitVM.

28

https://github.com/bitcoin/bips/blob/c2f268e83031b9b67e798c5c72a1171bfc463d1f/bip-unknown-var-budget-script.mediawiki
https://github.com/bitcoin/bips/blob/c2f268e83031b9b67e798c5c72a1171bfc463d1f/bip-unknown-var-budget-script.mediawiki
https://eprint.iacr.org/2018/643
https://github.com/BitVM/BitVM

	BitVM2: Bridging Bitcoin to Second Layers

